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Abstract

This study examines the impact of temporary school closures on influenza

transmission and respiratory mortality, leveraging a natural experiment from

winter break timings in Polish schools. Analyzing 12 years of ILI (Influenza-

Like Illness) data and two decades of respiratory death records, findings indi-

cate significant reductions in ILI incidence post-closures: 75% among school-

aged children, 55% in adults, 32% in pre-school children, and 37% in the el-

derly. Notably, a 10% decrease in respiratory mortality was observed among

the elderly, highlighting school closures as an effective public health interven-

tion for reducing influenza spread and mortality among high-risk groups.
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1 Introduction

WHO [2023] estimates that influenza affects approximately a billion individuals

globally each year, resulting in between 229,000 and 650,000 fatalities. Recovery

from influenza does not preclude the long-term negative consequences, extending

even through generations; infections among pregnant women cause adverse health

and economic outcomes among their children [Almond, 2006, Schwandt, 2018]. To

halt the spread of infectious diseases, policymakers have contemplated implementing

school closures, acknowledging schools as significant vectors for transmission. Yet,

most respiratory deaths are concentrated among the elderly [CDC, 2024], which

raises questions regarding the efficacy of school closures in preventing such deaths.

This paper documents the causal impact of temporary school closures on the preva-

lence of influenza and related respiratory mortality in Poland.
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The underlying hypothesis posits that school closures reduce contact rates among

students [Jackson et al., 2016], effectively reducing the spread of the virus. Schools

serve as a prime environment for viral transmission, with children spending 5 to 8

hours daily in classrooms that typically house around 30 students. In such settings,

a single ill student can spread the infection to numerous peers. Moreover, infected

students may carry the virus home, transmitting it to family members across differ-

ent age groups, including siblings, parents, and grandparents. This makes students

pivotal vectors for transmitting the virus to more vulnerable populations. Interrupt-

ing this transmission pathway through school closures not only has the potential to

reduce infections among school-aged children but also to limit the source of spillovers

to other age groups.

Empirical evidence demonstrates that school closures indeed diminish the inci-

dence of Influenza-Like Illness (ILI). Adda [2016] and Cauchemez et al. [2008] use

French data1 to show a significant decline in ILI incidence following schools holi-

days. This conclusion is further supported by Chu et al. [2017] who find a decrease

in ILI among children and adults after school closures in Beijing. Similar results are

obtained in studies throughout the world (Jackson et al. [2013]), such as Cowling

et al. [2008] in Hong Kong, Ali et al. [2013] in India, Heymann et al. [2004] in Israel,

and Wheeler et al. [2010] in the USA.

However, the onset of the COVID-19 pandemic has intensified scrutiny of the as-

sociation between schooling and infectious disease transmission. While initial obser-

vational studies suggested a linkage between school closures and reduced COVID-19

case numbers [Bignami-van Assche et al., 2021, Auger et al., 2020], most of subse-

quent research shows no causal relationship. Investigations leveraging variations in

school vacation timings have generally found limited or no-impact of such closures

on COVID-19 transmission dynamics [Bismarck-Osten et al., 2020, Isphording et al.,

2021]. Moreover, studies monitoring in-school cases and subsequent contact tracing

efforts have consistently reported limited transmission within educational settings

[Brandal et al., 2021, Falk et al., 2021, Gillespie et al., 2021, Ismail et al., 2021,

Zimmerman et al., 2021]. Notably, these findings challenge the direct applicability

of influenza-based models to the COVID-19 context, suggesting a more complex in-

terplay between school operations and disease type. This limited impact is further

corroborated by other studies using causal designs (Bravata et al. [2021], Fukumoto

et al. [2021]). The two notable exceptions are Vlachos et al. [2021] who show that

in-person schooling increases chances of infection among teachers and Chernozhukov

et al. [2021] who find an association of in-person schooling with higher growth rate

1Similar to data used in this project
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of cases.

This discrepancy between the impacts of school closures on COVID-19 versus

influenza underscores the need to further investigate how these closures affect in-

fluenza transmission, particularly focusing on the unexplored aspect of preventing

respiratory deaths. This paper leverages the plausibly exogenous variation in the

timing of winter breaks across Polish schools as a natural experiment to identify

the causal impact of temporary school closures on the incidence of Influenza-Like

Illness and respiratory mortality. To achieve this aim, the study utilizes detailed

surveillance and administrative data, encompassing 12 years of weekly, county-level

reports of ILI cases and two decades of respiratory infection-related mortality data.

The disaggregation of the data by age enables me to answer the critical question of

whether this policy also affects groups at elevated risk of mortality.

The findings indicate that school closure serves as an effective intervention for

reducing both the incidence of infections and mortality due to respiratory illnesses.

Specifically, there is a pronounced decline in ILI incidence among school-aged chil-

dren—by approximately 75%—in the weeks following the beginning of winter breaks.

This protective effect extends beyond the school-aged population. Incidence among

adults drops by 55%, among pre-school children by 32%, and among people aged

65 and older by 37%. Importantly, I demonstrate a sizable reduction in respira-

tory mortality in this last group. Conservatively, mortality decreases by about 10%

compared to the pre-holiday average. Mortality in other age groups is not affected.

While the immediate health benefits of school closures are evident, such measures

are not without their costs, particularly concerning human capital development and

the productivity of caregivers. This paper focuses predominantly on the health

implications of school closures. Readers interested in the broader socio-economic

consequences of school closures are encouraged to consult existing literature on the

topic (for instance Lempel et al. [2009], Adda [2016], Garcia and Cowan [2022], Jack

and Oster [2023], Goldhaber et al. [2023]).

The rest of the paper is organized as follows: Section 2 describes the data and

methods used, Section 3 presents the findings, and the Discussion closes the paper.

2 Methods

This study uses detailed surveillance data on ILI cases and mortality records,

and is structured around a SIRS epidemiological model. It employs an event study

framework leveraging the variation in timing of school vacations across Polish regions

to capture the causal effects of school closures on ILI incidence and respiratory
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mortality.

2.1 Data

I use two primary datasets: surveillance data on ILI cases and administrative

mortality records.

Surveillance Data : ILI case data are derived from weekly reports by primary

care physicians as part of the national influenza surveillance initiative. For surveil-

lance purposes, an illness is an ILI when a patient exhibits a fever of 38 °C (100 °F)
or higher along with a cough that started within the last 10 days. The reports de-

tail the number of patients presenting influenza symptoms, categorized into four age

groups: 0-4, 5-14, 15-64, and 65+ years. The reporting is performed by physicians

who voluntarily take part in the program. Nationally, about 1000 health practition-

ers participate in the program. Data is aggregated at the county and week level, with

”county” here referring to the administrative division known as ”powiat” in Poland.

Access to these reports was facilitated through county and regional epidemiological

stations, covering 168 of Poland’s 380 counties from 2005 to 2019. Figure A.1 in

the appendix shows counties that made the data available. The dataset includes

the total reported cases and the contributing doctors per county each week, with

disaggregated age group data available for the majority of counties. The surveillance

period is organized into 48 epidemiological weeks per year. My main outcome of

interest is the weekly incidence rates per age group and county, defined as the num-

ber of reported cases in a week per 10,000 persons in a given age group and county.

Figure 1 illustrates the weekly averages of these rates. A clear seasonal pattern is

observed, with incidence peaking typically in February-March, diminishing during

the summer, and resurging in September, aligning with the start of the school year.

Mortality Data : The mortality dataset encompasses all Polish counties from

2000 to 2018, detailing deaths by cause, age group, county, week, and year. Weeks

in Mortality data follow ISO norms. This analysis focuses on deaths attributed to

respiratory system diseases (ICD-10 category J), using annual population data by

age from the Polish Statistical Office (GUS) to compute mortality rates per 10,000.

Similar to ILI incidence, a seasonal mortality pattern arises, particularly pronounced

among seniors, with negligible rates in younger age groups (Figure 2).
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Figure 1: Average ILI Incidence by Week and Age Group
Note: Each dot represents the average weekly incidence of ILI cases per 10,000 people,
aggregated across years and counties. Pre-school children (0-4 years) report the highest
incidence, followed by school-aged children (5-14 years), the elderly (65+ years), and
adults (15-64 years). Source: Author’s compilation from epidemiological station data.

2.2 Motivating Model

The ”Susceptible-Infected-Recovered-Susceptible” (SIRS) epidemiological model

[Anderson et al., 1992] guides my analysis. It is a framework wherein an individual’s

state transitions through being susceptible, infected, and then recovered. This model

allows for the re-entry of recovered individuals into the susceptible population upon

immunity loss. The evolution of the infected population within this model is guided

by both the inflow of new infections and the outflow of recoveries, as detailed in the

following equation:

It,i = αdii
St−1,i

Pt−1,i

It−1,i +
∑
j ̸=i

αdij
St−1,i

Pt−1,i

It−1,j + (1− β)It−1,i (1)

In this equation, It,i represents the number of infected individuals in county i at

time t, with the infection dynamics determined by three principal factors:

1. Intra-county Infections: New infections within county i are proportional

to the contacts ( dii ) between susceptible and previously infected individuals

in that county ( It−1,i ), adjusted for the per-contact transmission probability

α and the proportion of the population still susceptible ( St−1,i/Pt−1,i ).
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Figure 2: Average Respiratory Mortality by Week and Age Group
Note: Each dot represents the average weekly mortality from respiratory diseases per
10,000 people, aggregated across years and counties. Seniors exhibit the highest mor-
tality rates, reflecting a seasonal pattern aligned with ILI incidence. Source: Author’s
compilation from administrative data.

2. Inter-county Infections: New infections stemming from contacts with indi-

viduals from county j ( dij ), summed over all counties.

3. Continuing Infections: Individuals who were sick in the previous time pe-

riod and have not recovered. Note that β represents the recovery probability.

Equation 1 can be used to demonstrate how the policy of school closures impacts

infection levels by temporarily reducing contact rates among children, leading to a

decrease in the parameter dii
2. This reduction in contact rates results in lower trans-

mission and, consequently, an immediate decline in infections following the start of

school vacations. Importantly, the effects of this intervention may extend beyond

the vacation period, even after the contact rate has returned to its prior level. As

the number of infected individuals decreases, the likelihood of new infections corre-

spondingly falls, potentially maintaining reduced infection rates for an additional 2

to 3 weeks after the recess period.

It is important to mention two assumptions that are necessary to accommodate

this model for the statistical analysis. Firstly, I assume a weekly cycle to align with

the typical incubation period of influenza (Lessler et al. [2009]). Hence, in my setting

2Virtually all children attend schools in their county of residence
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t represents an epidemiological week. Secondly, I assume that infected individuals

visit physicians. While the propensity to report does not need to be equal among

groups or across time, I assume it is not correlated with the timing of the school

break. In the remaining analysis, I will argue that observed changes in incidence

cannot be entirely driven by the changes in reporting.

The described model forms the analytical foundation for this study, guiding the

empirical strategy.

2.3 Empirical Strategy and Statistical Methods

The empirical strategy leverages a unique natural experiment arising from the

staggered timing of school breaks across Polish regions. During the winter months

from January to March, schools close for a two-week period3. However, the specific

timing of these breaks within a year varies by region (which encompasses multiple

counties)4. Regions are divided each year into four groups. The first group begins

their vacation in mid-January, while the last group starts in mid-February. Further-

more, the sequence in which these regions enter their vacation periods alternates

annually. The school calendar, determined in June preceding the winter vacation,

is set without prior knowledge of the impending flu season’s dynamics, making the

timing of these breaks plausibly exogenous to geographical and time variations in

ILI incidence. This scenario creates an environment where counties within early and

late vacation regions should be similar prior to the vacation start. This provides

support for the necessary assumption that in the absence of school closures, the ILI

trends would be parallel across these groups. Under this assumption, using late-

vacation counties as a control, I can construct a counterfactual for early-vacation

counties. Consequently, I can estimate the causal effects of school closures on ILI

incidence and associated mortality rates.

To assess the dynamic, week-by-week effects of school closures, I employ an event

study approach, which follows the equation 2:

ycwya =
12∑

T=−6
T ̸=−3

βTaI{wy − (wy)Vc = T}cwy + δXcwy + γwya + θcwa + λcya + ecwya (2)

This equation models the outcome variables ycwya, representing either the number

3Pre-schools and care centers do not observe winter breaks.
4Region is an administrative unit larger than a county. There are 16 regions (wojewodztwa) in

Poland
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of reported flu cases or respiratory deaths per 10,000 individuals in county c, during

week w, of year y, across different age groups a.

The treatment effect is captured through a series of indicator functions. Let

(wy)Vc be the first week of vacation in year y and county c. Then I{wy − (wy)Vc =

T}cwy equals 1 if a county c is T weeks away from the start of the winter vacation.

As T ranges from -6 to 12, the coefficients βTa capture effects from 6 weeks prior to

the vacation to 12 weeks afterward. Therefore, βTa are the primary coefficients of

interest showing the change in the outcome for each week relative to a counterfactual

scenario where no vacation occurs. The key period of intervention is marked by

T = 0, corresponding to the week when the recess begins. The third week before

the vacation (T = −3) is excluded and serves as a reference point. Given the

misalignment between the 48-week epidemiological calendar and the school year

calendar, vacations may occasionally begin a few days before the designated week of

T = 0, hence I do not exclude T = −1. It also allows for the examination of potential

anticipatory effects, where individuals might alter their behavior in anticipation of

the vacation, potentially affecting transmission dynamics.

In assessing the impact on infection rates, the model incorporates a control

variable, Xcwy, representing the number of reporting doctors per 10,000 individuals.

Additionally, the analysis includes a comprehensive set of fixed effects: week-year-

age-group γwya, week-county-age-group θcwa, and year-county-age-group λcya. These

fixed effects are designed to account for varying patterns of seasonality and reporting

practices across counties and over years. The model is estimated separately for each

age group to accurately capture age-specific effects. To address potential spatial

correlations, standard errors are clustered at the regional level.

In the appendix, I present results for analyses using log(y + 1) as the outcome

variable, enabling to interpret the impact in percentage terms (see Figures A.3 and

A.4). Given the challenges in interpreting outcomes derived from using log(y + 1)

with 0 outcomes [Chen and Roth, 2023], I apply Poisson regression models to the

count data, with results detailed in Figures A.5 and A.6 of the appendix. To address

potential concerns regarding treatment heterogeneity and its effect on the estimates

in the event study, I perform a check with the robust difference-in-differences estima-

tor from Callaway and Sant’Anna [2021], with findings shown in appendix Figures

A.7 and A.8. Additionally, I extend the analysis to evaluate the policy’s impact on

the reproductive number, not merely incidence rates, detailed in Appendix Section

A.1.1.
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Figure 3: Event study: ILI Incidence
Note: Graph shows the impact of winter vacation on the ILI incidence by age group.
Each sub-figure represents results of the estimation of the event study in equation 2 on a
sub sample restricted to age groups 0-4,5-14,15-64, 65+. Line represents estimates of the
coefficients βT from equation where the outcome is number of reported cases in a given
county and week, per 10000 inhabitants (of a given age-group). These parameters show
the change in incidence in week T , compared to three weeks before the vacation. Shaded
area represents 95% confidence interval for the estimates. Standard errors are clustered
at the region level. Source: own elaboration based on data collected from epidemiological
stations.

3 Results

Temporary school closures significantly reduce the incidence of ILI among all age

groups and respiratory mortality among the elderly.

Figure 3 graphically presents the estimated βTa coefficients, which reflect the

impact of school closures on ILI incidence over time for various age groups. As

depicted, the group most significantly impacted by school closures are children aged

5-14. The reduction in incidence begins during the vacation week and extends

through to the fourth week after the start of the recess. In the vacation week,

there is a decrease of 44 cases per 10,000, relative to the counterfactual, which is

notable given the pre-vacation weekly average of approximately 91 cases per 10,000

in this demographic. The decline persists into the first and second weeks following

vacation start, with 88 fewer cases each week, and remains lower by 51 cases in the

third week—all statistically significant reductions. The continued decrease in the

third week is particularly interesting since it occurs despite students having returned

to school. Undeniably, the boost in travel and related absence may contribute to

the decrease in reporting during the recess. However, the subsequent drop cannot

be attributed to an absence during the vacation, as children need to be back in
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school in the following week. The persistence is consistent with an initial decrease

in the pool of infected individuals due to fewer interactions, and it is inconsistent

with a temporary decrease in reporting. Most coefficients preceding vacation start

are zero, suggesting that early and late counties indeed have parallel ILI trajectories

without vacation. The sole deviation at T = −1 may arise from discrepancies

between epidemiological and school calendar alignment. Aggregating the significant

effects over all relevant weeks, the vacation causes a decrease of around 272 cases per

10,000—amounting to a roughly 75% reduction in incidence from the pre-vacation

period. It is also worth noting that the impact is evident as the winter vacation

happens during the typical peak of the epidemic 5.

The implementation of school closure policies effectively halts the spread of ILI

among school-aged children and diminishes the risk of exposure for high-complication-

risk groups. While children of school age typically exhibit mild symptoms and re-

cover quickly, very young children and the elderly are more susceptible to severe

influenza-related complications, making their cases more impactful from a health-

care perspective. Fortunately, school closures appear to also mitigate the incidence

rate in these vulnerable age groups.

For pre-school children (0-4 years), a decrease in infection incidence begins in

the second week following the start of the break, with 76 fewer infections per 10,000

relative to the counterfactual. This lower incidence persists until the fifth week,

accumulating to a 32% reduction compared to the pre-vacation average for this age

group.

Adults, too, show a decline in ILI cases post-vacation. Although the absolute

decrease is smaller, the relative reduction is more pronounced. Starting with a

significant drop of 9 cases per 10,000 in the first week of vacation, the decrease

extends until the third week, accumulating to a 55% decrease in incidence. This

result highlights that school-aged children are a significant source of infections for

adults.

Finally, the elderly population (65+ years) also experiences a significant decline

in infections. Beginning with the first week of vacation, there are 7 fewer cases

per 10,000 compared to the counterfactual. The protective effect extends over the

following five weeks, though it gradually wanes. Overall, the vacation period con-

tributes to averting 27 cases per 10,000 in this age group, equating to a 37% decrease

from the pre-vacation average.

The reduction in ILI cases across various age groups is likely due to decreased

5A similar exercise is not feasible for summer vacation because the flu level is negligible and all
counties have summer recess at the same time every year
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intra-household transmission, with school-age children serving as common vectors.

This highlights the broader protective impact of school closures beyond the imme-

diate school environment.

Given the observed positive spillovers of school closure policies on at-risk age

groups, we might expect a decrease in their mortality. Figure 4 presents the results

of the estimation where the outcome variable is respiratory mortality, indicating that

school closures indeed contribute to a decline in respiratory disease-related deaths

among the elderly population aged 65 and above.

Figure 4: Event study: Respiratory Mortality
Note: Graph shows the impact of winter vacation on the ILI incidence by age group.
Each sub-figure represents results of the estimation of the event study in equation 2 on a
sub sample restricted to age groups 0-4,5-14,15-64, 65+. Line represents estimates of the
coefficients βT from equation where the outcome is number of reported cases in a given
county and week, per 10000 inhabitants (of a given age-group). These parameters show
the change in incidence in week T , compared to three weeks before the vacation. Shaded
area represents 95% confidence interval for the estimates. Standard errors are clustered
at the region level. Source: own elaboration based on mortality data.

Prior to the vacation period, the baseline weekly respiratory mortality among the

elderly stands at 0.73 per 10,000 individuals. Following the vacation start, significant

declines are observed: mortality decreases by 0.0576 in the third week and by 0.093

in the fourth week. While the coefficient at later dates are negative, they are not

statistically significant at traditional thresholds. These reductions are statistically

significant and their timing aligns with the incubation to death period for influenza,

consistent with the hypothesized impact of school closures. The cumulative effect

of these significant reductions represents approximately a 10% decrease from the

pre-vacation average mortality rate in this demographic.

Collectively, these results confirm that interactions among students significantly

propagate Influenza-Like Illnesses. Furthermore, the evidence suggests that school
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closures serve as an effective tool not only to halt viral transmission across age-

groups but also to reduce seasonal mortality among high-risk groups, such as the

elderly. These findings offer compelling justification for the implementation of school

closures as a public health strategy during peak influenza seasons.

4 Discussion

This study’s causal estimates on the effects of school closures on influenza-like

illnesses (ILI) and respiratory mortality highlights the significant public health ben-

efits of such interventions. Analyzing data from a natural experiment involving

staggered school vacation schedules reveals substantial reductions in ILI incidence

across all age groups, with the most significant 75% decrease among school-aged chil-

dren. Moreover, the implementation of this policy significantly attenuated respira-

tory mortality among the elderly, a group particularly vulnerable to severe outcomes

from influenza.

School closures break the chain of transmission within the community, demon-

strating that school-aged children play a crucial role in the spread of influenza. The

resulting declines in illness and mortality not only lessen the burden on healthcare

systems but also emphasize the efficacy of school closures as a temporary public

health measure to mitigate influenza outbreaks.

The impact on incidence observed in this study places it at the higher end com-

pared to other findings in the literature. Methodologically similar work of Adda

[2016], reports a decrease of 30 − 40% in children, 20 − 30% in adults, and 20% in

the elderly. Adda’s inclusion of preschool children and older teenagers in the chil-

dren’s group may account for the smaller effect size. Furthermore, the confidence

intervals for the elderly in Adda’s study contain the estimates reported here.

Comparative studies from France [Cauchemez et al., 2008], China [Chu et al.,

2017], Argentina [Garza et al., 2013], Israel [Heymann et al., 2004], and the USA

[Wheeler et al., 2010] typically demonstrate smaller effects ranging from 13 − 42%

decline for children. Nonetheless, these studies often compare incidence ratios during

or post-break to the periods before, rather than to a counterfactual scenario in the

absence of holidays—potentially underestimating the effects relative to the causal

estimates presented here. Chowell et al. [2014] in Chile found reductions similar to

this study, with a 67% decline in children and 37% in adults.

Regarding mortality, while no direct comparisons exist, the magnitude of signifi-

cant effects on the elderly in this study is more than double the increase in influenza

mortality linked to local events, such as the presence of a home team in the Super
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Bowl, associated with a mortality increase of 0.07 per 10, 000 among the elderly ?.

According to my estimates, winter vacations may prevent approximately 107, 400

infections annually among school-age children, 25, 736 infections in the 0 − 4 age

group, 125, 580 cases among adults aged 15 − 64, and 18, 177 cases among those

aged 65 and older. Crucially, disrupting transmission during the winter vacation is

estimated to prevent 101 deaths in the elderly population annually.

Nonetheless, this study has limitations. The data comes from primary care re-

ports, which could lead to under-detection of infections if individuals refrain from

seeking medical attention. Moreover, not all doctors report, resulting in missing

cases, and not all reported cases are laboratory-confirmed as influenza. Addition-

ally, vacation periods may influence the propensity to visit a doctor, although this

is unlikely to account for the observed post-vacation decline. These reporting issues

do not affect mortality data, which is derived from administrative records and is not

subject to timing adjustments based on vacation schedules. A further limitation is

the imperfect alignment between epidemic and school calendars, potentially misas-

signing vacation periods by up to three days. Lastly, the generalizability to other

diseases is limited, as transmission patterns may differ and not be as dependent on

children.

Despite these limitations, the results appear robust, as substantiated by the

various robustness checks in the appendix section A.1, exploring alternative outcome

definitions, specifications, and methodological approaches.

While school closures can effectively reduce infections and mortality, this benefit

is just one part of the decision. Policymakers need to consider the trade-offs, bal-

ancing health gains against educational disruptions and the extra caregiving load

on families.
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A Appendix: For Online Publication

Figure A.1: Counties with data available
Note: Shaded areas represent counties which made their data available
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Figure A.2: Event study: Mortality due to external causes by age
Note: Graph shows the impact of winter vacation on the external causes mortality (cat.

V in ICD-10) by age. Each sub-figure represents results of the estimation of the event

study in equation 2 on a sub sample restricted to age groups 0-4,5-14,15-64, 65+. The

outcome is the number of deaths due to external causes in the given age category in a

county i and week t per 10 000 of inhabitants (of given age). Hence the coefficients show

the change in the number of deaths in each week prior and after the vacation, where

week 0 is the first week of vacation. Shaded area represents 95% confidence interval for

the estimates. Source: own elaboration based on mortality data.
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A.1 Robustness Checks

Figure A.3: Event study: log(Incidence+1)
Note: Graph shows the impact of winter vacation on the weekly incidence of infections.

Each sub-figure represents results of the estimation of the event study in equation 2 on

a sub sample restricted to age groups 0-4,5-14,15-64, 65+. The outcome is log of the

incidence plus 1. Hence the coefficients show the percentage change in the incidence

in each week prior and after the vacation, where week 0 is the first week of vacation.

Shaded area represents 95% confidence interval for the estimates. Errors are clustered

at the region level. Source: own elaboration based on epidemiological data.
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Figure A.4: Event study: log(Mortality+1)
Note: Graph shows the impact of winter vacation on the weekly respiratory mortality.

Each sub-figure represents results of the estimation of the event study in equation 2 on

a sub sample restricted to age groups 0-4,5-14,15-64, 65+. The outcome is log of the

mortality plus 1. Hence the coefficients show the percentage change in the mortality

in each week prior and after the vacation, where week 0 is the first week of vacation.

Shaded area represents 95% confidence interval for the estimates. Errors are clustered

at the region level. Source: own elaboration based on mortality data.
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Figure A.5: Poisson Regression: Infections
Note: Graph shows the impact of winter vacation on the external causes mortality (cat.

V in ICD-10) by age. Each sub-figure represents results of fitting a Poisson regression

following the specification of the event study in equation 2 on a sub sample restricted to

age groups 0-4,5-14,15-64, 65+. The outcome is the number of reported infections in a

given county and week. Hence the coefficients show the percentage change in the number

of infections in each week prior and after the vacation, where week 0 is the first week of

vacation, compared to week -3. Shaded area represents 95% confidence interval for the

estimates. Source: own elaboration based on epidemiological data.
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Figure A.6: Poisson Regression: Deaths
Note: Graph shows the impact of winter vacation on the external causes mortality (cat.

V in ICD-10) by age. Each sub-figure represents results of fitting a Poisson regression

following the specification of the event study in equation 2 on a sub sample restricted to

age groups 0-4,5-14,15-64, 65+. The outcome is the number of respiratory deaths in a

given county and week. Hence the coefficients show the percentage change in the number

of infections in each week prior and after the vacation, where week 0 is the first week of

vacation, compared to week -3. Shaded area represents 95% confidence interval for the

estimates. Source: own elaboration based on epidemiological data.
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Figure A.7: Robust DiD: Incidence
Note: Graph shows the robust event study estimates based on Callaway and Sant’Anna

[2021]. Each sub-figure represents results of the estimation on a sub sample restricted

to age groups 0-4,5-14,15-64, 65+. The outcome is the number of reported infections

in the given age category in a county c and week w per 10 000 of inhabitants (of given

age). Each season is treated as a separate experiment. Only the effect up to week 3

can be estimated, because the latest region starts vacation 4 weeks after the earliest

region and hence there is no more untreated units. Standard errors are boostrapped,

with randomization at the regional level. Shaded area represents 95% confidence interval

for the estimates. Source: own elaboration based on epidemiological data.
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Figure A.8: Robust DiD: Mortality
Note: Graph shows the robust event study estimates based on Callaway and Sant’Anna

[2021]. Each sub-figure represents results of the estimation on a sub sample restricted to

age groups 0-4,5-14,15-64, 65+. The outcome is the number of deaths in the given age

category in a county c and week w per 10 000 of inhabitants (of given age). Each season

is treated as a separate experiment. Only the effect up to week 3 can be estimated,

because the latest region starts vacation 4 weeks after the earliest region and hence there

is no more untreated units. Standard errors are boostrapped, with randomization at the

regional level. Shaded area represents 95% confidence interval for the estimates. Source:

own elaboration based on epidemiological data.

A.1.1 Event study: impact on transmission

This event study looks at the impact of the winter vacation on the transmission

of the virus. It measures the impact of the break on the interactions which fuel the

spread of the virus. School recess disrupts interactions in weeks 0 and 1 (recess lasts

two weeks). Hence the virus will have a lower reproduction rate from week 0 to 1

and from week 1 to 2. The event study follows the equation:

Icwy

Lcwy

=
10∑

T=−5

αT I{wy−(wy)Vc = T}cwy ∗ S̃cwy
Ĩcwy

Lcwy

+α0S̃cwy
Ĩcwy

Lcwy

+δXcwy.+ecwy (3)

Where the Lcwy represents the number of reporting doctors in county c, week

w and year y. The number of infected individuals ( Icwy ) is the number of newly

reported cases. The susceptible share S̃cwy is the total population minus the cumu-

lative number of reported infections since the start of the epidemic season (epidemi-

ological week 24).
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Figure 15 shows the results. Vacation clearly disrupts the transmission of the

flu, as evidenced by the high decline in the reproduction of the virus in weeks 1 and

2. In other words, the same amount of infections results in fewer secondary cases in

weeks 1 because of fewer interactions among children in respective previous weeks.

As expected, the parameter returns to the pre-vacation value three weeks after the

vacation began as children start interacting again at a usual rate in week 2.

Figure A.9: Impact of winter vacation on transmission
Note: Graph shows the impact of winter vacation on the reported influenza cases. Lines

represents estimates of the coefficients αT from the event study in equation 3 where

the outcome has been changed to log(
Ii,t
Li,t

+ 1). Shaded area represents 95% confidence

interval for the estimates. Source: own elaboration based on data collected from epi-

demiological stations.
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