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Abstract

This study examines the impact of temporary school closures on influenza

transmission and respiratory mortality, leveraging a natural experiment from

winter break timings in Polish schools. Using causal inference methods on 12

years of ILI (Influenza-Like Illness) data and two decades of respiratory death

records, the analysis shows significant reductions in ILI incidence within four

weeks post-closures in an average season: 75% among school-aged children,

55% in adults, 26% in pre-school children, and 31% in the elderly, compared

to pre-vacation averages. Notably, a 7% decrease in respiratory mortality

was observed among the elderly, highlighting school closures as an effective

public health intervention for reducing influenza spread and mortality among

high-risk groups.
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1 Introduction

WHO [1] estimates that influenza affects approximately a billion individuals

globally each year, resulting in between 229,000 and 650,000 fatalities. Children

have been identified as key contributors to influenza transmission due to their rel-

atively high infectivity [2]. To halt the spread of infectious diseases, policymakers

consider school closures, acknowledging schools as significant hubs for transmission.

Yet, most respiratory deaths are concentrated among the elderly [3], which raises

questions regarding the efficacy of school closures in preventing such deaths. This

paper documents the causal impact of temporary school closures on the incidence

of influenza and related respiratory mortality in Poland.
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The underlying hypothesis posits that school closures reduce contact rates among

students [4], effectively reducing the spread of the virus. Schools serve as a prime

environment for viral transmission, with children spending 5-8 hours daily in class-

rooms that typically house around 30 students. In such settings, a single ill student

can spread the infection to numerous peers. Moreover, infected students may carry

the virus home, transmitting it to family members across different age groups, in-

cluding siblings, parents, and grandparents. Interrupting this transmission pathway

through school closures could potentially reduce infections among school-aged chil-

dren and limit the source of spillovers to other age groups.

Empirical evidence demonstrates that school closures indeed diminish the inci-

dence of Influenza-Like Illness (ILI). Adda [5] and Cauchemez et al. [6] use French

data1 to show a significant decline in ILI incidence following schools holidays. This

conclusion is further supported by Chu et al. [7] who find a decrease in ILI among

children and adults after school closures in Beijing. Similar results are obtained in

studies throughout the world [8], in India [9], in Israel [10] , and in the USA [11]. An

exception is the study in Hong Kong by Cowling et al. [12], which shows a limited

impact of school vacations when influenza activity is low.

This paper leverages the plausibly exogenous variation in the timing of winter

breaks across Polish schools as a natural experiment to identify the causal impact of

temporary school closures on the incidence of Influenza-Like Illness and respiratory

mortality. To achieve this aim, the study utilizes detailed surveillance and adminis-

trative data, encompassing 12 years of weekly, county-level reports of ILI cases and

two decades of respiratory infection-related mortality data. The disaggregation of

the data by age enables me to answer the critical question of whether this policy

also affects groups at elevated risk of mortality.

While school closures can have immediate health benefits in terms of fewer infec-

tions and deaths, such measures are not without their costs, particularly concerning

human capital development and the productivity of caregivers. This paper focuses

predominantly on the health implications of school closures. Readers interested

in the broader socio-economic consequences of school closures are encouraged to

consult existing literature on the topic [13, 5, 14, 15, 16].

2 Methods

This study uses detailed surveillance data on ILI cases and mortality records.

It employs an event study framework leveraging the variation in timing of school

1Similar to data used in this project
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vacations across Polish regions to capture the causal effects of school closures on ILI

incidence and respiratory mortality.

2.1 Data

I use two primary datasets: surveillance data on ILI cases and administrative

mortality records.

Surveillance Data: ILI case data are derived from weekly reports by primary

care physicians as part of the national influenza surveillance initiative. For surveil-

lance purposes, an illness is an ILI when a patient exhibits a fever of 38 °C (100 °F)
or higher along with a cough that started within the last 10 days. The reports de-

tail the number of patients presenting influenza symptoms, categorized into four age

groups: 0-4, 5-14, 15-64, and 65+ years. The reporting is performed by physicians

who voluntarily take part in the program. Nationally, about 1000 health practition-

ers participate in the program. Data is aggregated at the county and week level, with

”county” here referring to the administrative division known as ”powiat” in Poland.

Access to these reports was facilitated through county and regional epidemiological

stations, covering 168 of Poland’s 380 counties from 2005 to 2019. Figure A.1 in

the appendix shows counties that made the data available. The dataset includes

the total reported cases and the contributing doctors per county each week, disag-

gregated by age group for the majority of counties. The surveillance data received

from the epidemiological stations is organized into 48 ”epidemiological weeks” per

year, following the structure set by Polish authorities. Specifically, each month is

divided into 4 ”weeks”, starting respectively on the 1st, 8th, 16th, and the 23rd

day of the month. My main outcome of interest is the weekly incidence rates per

age group and county, defined as the number of reported cases in a week per 10,000

persons in a given age group and county. Figure 1a illustrates the weekly averages of

these rates. Weeks are expressed in influenza season terms with the 1st week of the

season corresponding to the first week of July. A clear seasonal pattern is observed,

with incidence peaking typically in February-March, diminishing during the sum-

mer, and resurging in September, aligning with the start of the school year. More

detailed figures are available in the appendix, including Figure A.15 , which shows

the weekly average incidence for each season, and Figure A.16, which illustrates the

weekly average incidence in relation to the timing of vacations.

Mortality Data: The mortality dataset encompasses all Polish counties from

2000 to 2018, detailing deaths by cause, age group, county, week, and year. Weeks
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(a) Average ILI Incidence by Week and Age Group
Note: Each dot represents the average weekly incidence of ILI cases per 10,000 people,
aggregated across seasons and counties. First week of the season corresponds to the first
week of July. Data were supplied by the epidemiological stations in 168 Polish counties
detailing the ILI reports from the primary care providers spanning years 2005-2019.
Bands represent 95% confidence intervals for the means. Pre-school children (0-4 years)
report the highest incidence, followed by school-aged children (5-14 years), the elderly
(65+ years), and adults (15-64 years).

(b) Average Respiratory Mortality by Week and Age Group
Note: Each dot represents the average weekly mortality from respiratory diseases (ICD-
10 category J) per 10,000 people, aggregated across seasons and counties. First week
of the season corresponds to the first week of July. The administrative mortality data
provided by Polish Statistical Office (GUS) covers all Polish counties (360) across years
2000-2018. Bands represent 95% confidence intervals for the means. Seniors exhibit the
highest mortality rates, reflecting a seasonal pattern aligned with ILI incidence.

Figure 1: Average ILI and Mortality by Week and Age Group

in mortality data follow ISO norms. This analysis focuses on deaths attributed
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to respiratory system diseases (ICD-10 category J), using annual population data

by age to compute mortality rates per 10,000, with both datasets from the Polish

Statistical Office (GUS). Similar to ILI incidence, a seasonal mortality pattern arises,

particularly pronounced among seniors, with negligible rates in younger age groups

(Figure 1b). Figures disaggregated by season (A.17) and vacation timing (A.18) are

available in the appendix.

2.2 Empirical Strategy and Statistical Methods

The empirical strategy leverages a unique natural experiment arising from the

staggered timing of school breaks across Polish regions. During the winter months

from January to March, schools close for a two-week period2. However, the specific

timing of these breaks within a year varies by region (which encompasses multi-

ple counties)3. Regions are divided each year into four groups. The first group

begins their vacation in mid-January, while the last group starts in mid-February.

Furthermore, whether a region has an earlier or later school break changes every

year. The school calendar, set in June before winter vacation, is determined with-

out knowledge of the upcoming flu season’s dynamics, making the timing of these

breaks exogenous to geographical and time variations in ILI incidence. This sug-

gests that counties in early and late vacation regions are similar before the vacation

starts, supporting the assumption that ILI trends would be parallel without school

closures. Using late-vacation counties as a control, I can construct a counterfactual

for early-vacation counties and estimate the causal effects of school closures on ILI

incidence and associated mortality rates.

The empirical strategy is intuitively illustrated in the Figure 2, showing the

average incidence of influenza-like illnesses (ILI) per 10,000 children aged 5-14 during

the years 2015-2016, segmented by the week they start vacation. The orange line

represents the group of counties starting vacation in week 28, while the grey line

represents the group starting vacation in week 32.

Both lines overlap during the period before any group starts vacation, reflecting

the quasi-random assignment of vacation timing across counties, which should result

in similar baseline ILI rates. This overlap supports the use of the later-starting group

as a counterfactual for the earlier-starting group.

In week 28, the orange group starts their vacation, effectively becoming the

”treated” group. The incidence of ILI in this group remains relatively low during

their vacation period. Conversely, the grey group does not start their vacation until

2Pre-schools and care centers do not observe winter breaks.
3There are 16 regions (wojewodztwa) in Poland
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week 32, remaining ”untreated” during this interval, and their ILI incidence rises.

Their outcomes can be conceived as what would happen in the ”treated” group had

they not experienced vacation.

The difference in ILI rates between the two groups represents the treatment

effect of the vacation. Specifically, it shows the reduction in incidence caused by the

vacation.

The graph ends at week 31 because, from week 32 onwards, both groups have

had a vacation, removing a pure counterfactual comparison. Although longer-term

effects cannot be inferred from the figure alone, they can be estimated under certain

assumptions using the framework detailed below.

Figure 2: Winter Vacation and ILI Incidence among School-Age Children
Note: Graph shows the average incidence of influenza-like illnesses per 10,000 among children
aged 5-14 years in 2015-2016, divided by the week in which they start vacation. The orange line
represents the incidence for the group starting vacation in week 28, while the grey line represents
the group starting vacation in week 32. The x-axis shows the week of the season. The first dashed
line indicates the start of vacation for the group having vacation in weeks 28-29, and the next
dashed line indicates the end of vacation for the same group. In the light blue shaded area, none
of the groups have experienced vacation. In the light green shaded area, the group with vacation
in weeks 28-29 has experienced vacation, but the group with vacation in weeks 32-34 has not.
Starting in week 32, both groups would have experienced vacation.

To assess the dynamic, week-by-week effects of school closures, I employ an event

study approach following the equation 1:
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ycwya =
12∑

T=−6
T ̸=−3

δTaI{wy − (wy)Vc = T}cwy + ϕXcwy + γwya + θcwa + λcya + ecwya (1)

This equation models the outcome variables ycwya, representing either the number

of reported flu cases or respiratory deaths per 10,000 individuals in county c, during

week w, of year y, across different age groups a.

The treatment effect is captured through a series of indicator functions. Let

(wy)Vc be the first week of vacation in year y and county c. Then I{wy − (wy)Vc =

T}cwy equals 1 if a county c is T weeks away from the start of the winter vacation. As

T ranges from -6 to 12, the coefficients δTa capture effects from 6 weeks prior to the

vacation to 12 weeks afterward. Therefore, δTa are the primary coefficients of interest

showing the change in the outcome for each week relative to a counterfactual scenario

where no vacation occurs. The key period of intervention is marked by T = 0,

corresponding to the week when the recess begins. The analysis is normalized to

the third week before the vacation (T = −3) as the reference point for two reasons.

First, it allows for detecting anticipatory effects, as individuals might change their

behavior before T = 0. Setting T = −3 is far enough to ensure behavior is unaffected

by the start of the vacation. Second, it addresses the misalignment between the 48-

week epidemiological calendar and the school year calendar, where vacations may

begin before T = 0, causing effects to appear in T = −14. Therefore, T = −3 is

chosen because vacations never overlap with it, avoiding underestimation of effects.

The model also includes a control variable for the number of reporting doctors per

10,000 individuals (Xcwy ) and fixed effects: week-year-age-group γwya, week-county-

age-group θcwa, and year-county-age-group λcya, to account for varying seasonality

and reporting practices. The model is estimated separately for each age group to

capture age-specific effects. Standard errors are clustered at the regional level.

The reduced-form approach used in this paper estimates the impact of inter-

ventions by comparing observed outcomes, such as infection rates post-vacation,

to a counterfactual scenario without the intervention. Being model-agnostic, it

avoids assumptions about transmission dynamics, incubation periods, or the size of

the susceptible population, making it flexible and more robust to mis-specification.

Reduced-form estimates can capture both the average effect on incidence and growth

rates across different contexts, and they can be disaggregated by specific epidemic

phases, provided these phases occur within the sample (results disaggregated by

4In case of a discrepancy, the first week of vacation is set to be the first epidemiological week
which has more than 3 days of vacation
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epidemic context are in the appendix). However, these estimates combine multiple

factors (e.g., changes in contact rates, shifts in the susceptible population) without

differentiating between them. Additionally, the reduced-form approach does not

allow for reconstructing the full epidemic curve.

In contrast, structural models used in other work estimate the underlying pa-

rameters of the transmission process, enabling them to simulate how interventions

affect different stages of the epidemic. These models can predict whether an inter-

vention will slow growth or accelerate decline and can assess the impact of varying

the timing or duration of interventions. Structural models provide richer, more

generalizable insights, but they rely on assumptions about the transmission process

that may be more vulnerable to mis-specification. They also help distinguish the

specific mechanisms driving changes in outcomes and can simulate a wider range of

hypothetical scenarios (an excellent example being Cauchemez et al. [6]).

Both approaches offer value to policymakers and work well together. Structural

models can guide reduced-form analysis by helping to evaluate whether observed

outcomes, such as changes in growth rates, align with model-based predictions.

Reduced-form methods, on the other hand, deliver clear, empirical estimates of

overall effects without imposing any structure, which can inform and help calibrate

structural models—for example, by identifying whether cases rise after schools re-

open. Together, these methods provide a fuller, more comprehensive understanding

of intervention effects.

Although the estimates are model-independent, Section A.5 illustrates how the

event study coefficients relate to parameters of a simplified SIR model if that were

the infection-generating process. In Section A.6, I validate the event study method

through simulations, showing it accurately estimates the treatment effect in a con-

trolled environment where the true effect is known. The event study exhibits min-

imal bias, with any positive bias related to the heterogeneity of treatment effects

across groups experiencing vacations at different times [17].

This issue arises because the direct counterfactual for a county experiencing a

vacation is an ”untreated” county that has not yet experienced a vacation. However,

since all counties have vacations within a 4-week window, there is no ”untreated”

county for periods further than 3 weeks after the first group’s vacation. Using

estimates from the earlier periods, it is still possible to causally infer the longer-

term effects, but this requires the assumption that the path of effects is the same for

counties with early and late vacations. In Section A.5, I argue why the assumptions

behind this method are likely to hold true in this context.

To address this potential issue, I also provide an estimate using a method de-
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signed by Callaway and Sant’Anna [18], which is robust to the issue arising due to

the heterogeneity of treatment effects. Section A.6 shows this method exhibits min-

imal bias. However, this approach comes at the cost of not being able to extrapolate

longer-term effects. These findings are presented in Appendix Figures A.7 and A.8.

The main results are presented in terms of incidence, similar to some other stud-

ies on school closures [10, 7, 19]. This approach offers a straightforward empirical

summary of the extent to which the epidemic burden is alleviated due to school

vacations by comparing observed incidence with a counterfactual scenario without

vacations. However, it does not necessarily provide a complete picture of the under-

lying dynamics that lead to the causal decline in cases. To address this limitation and

gain a more comprehensive understanding, I present additional analyses described

below.

In the Appendix (Figure A.10), I assess how school vacations affect the epidemic

growth rate, exploring how the average causal difference in growth rates evolves

compared to a counterfactual scenario without vacations. During vacations, growth

rates may slow or cases may decline more rapidly. After vacations, growth rates

may increase relative to the counterfactual, potentially leading to case numbers

that remain lower or eventually surpass those without vacations. Combined with

the analysis of total incidence, this approach provides insights into the overall effects

and some intermediary mechanisms of the intervention. However, these estimates

do not fully capture the epidemic’s complex dynamics; modeling could complement

this empirical analysis by offering more detailed insights into specific transmission

pathways and predicting outcomes under different scenarios.

I also analyze the data using the logarithm of incidence plus one, log(y + 1), as

the outcome variable (see Figures A.3 and A.4), or percentage interpretations of the

effects. Recognizing the challenges associated with the log(y + 1) transformation

and zero outcomes [20], I employ Poisson regression models on the count data as

well, with results presented in Figures A.5 and A.6. This methodology follows

approaches used in previous studies [21, 22]. Additionally, the analysis is extended

to evaluate the policy’s impact on the reproductive number, not merely incidence

rates, as detailed in Appendix Section A.3.

3 Results

Temporary school closures significantly reduce the incidence of ILI among all age

groups and respiratory mortality among the elderly.

Figure 3 shows the estimated δTa coefficients, reflecting the impact of school
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Figure 3: Event study: ILI Incidence
Note: Graph shows the impact of winter vacation on the ILI incidence by age group.
Each sub-figure represents results of the estimation of the event study in equation 1 on a
sub sample restricted to age groups 0-4,5-14,15-64, 65+. Line represents estimates of the
coefficients δT from equation where the outcome is number of reported cases in a given
county and week, per 10 000 inhabitants (of a given age-group). These parameters show
the change in incidence in week T , compared to the counterfactual the vacation. Shaded
area represents 95% confidence interval for the estimates. Standard errors are clustered
at the region level.

closures on ILI incidence for various age groups over time. These results represent

the average effect of school vacations across the seasons in the sample, for the 6

weeks before and 12 weeks after the vacations. Each coefficient for a week T rep-

resents the difference in incidence in T weeks after the vacation, compared to what

the incidence would have been in that week had the vacation not occurred. These

coefficients come from the context where school vacations typically occur around

the peak of the influenza season. The effect in a particular season might depend on

the timing of the vacation within the epidemic curve; this heterogeneity is analyzed

in the appendix, while average results are summarized here. Children aged 5-14

are the most significantly affected. The reduction begins during the vacation week

and extends to the fourth week after. In the vacation week, incidence decreases on

average by 44 cases per 10,000 (95% confidence interval (CI): -71.6, -16.9), relative

to the counterfactual, which is notable given the pre-vacation weekly average of ap-

proximately 91 cases per 10,000 in this demographic. The decline continues with, on

average, 88 fewer cases per 10,000 in the first and second weeks after the vacation

begun (95% CI: Week 1: -138.9, -38.2; Week 2: -142.9 -32.4) and 51 fewer cases per

10,000 on average in the third week (95% CI: -94.9, -8.4), all statistically signifi-

cant at 5% level. Most coefficients preceding vacation are zero, suggesting parallel

ILI trajectories in early and late counties without vacation. The sole deviation at
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T = −1 may arise from discrepancies between epidemiological and school calendar

alignment. Aggregating the effects over the 4 weeks since the start of the recess,

the vacation cause a decrease of around 272 cases per 10,000 (95% CI: -414, -130)

in an average season, roughly a 75% reduction from the pre-vacation period of 4

weeks (with average of 364.6 cases per 10,000). Cumulative effects are detailed in

the Table A1 5.

The implementation of school closure policies effectively slows the spread of

influenza-like illness among school-aged children, lowering their infection rates and

potential to spread the virus. As the subsequent results demonstrate, school clo-

sures also mitigate the incidence in other age groups, including the most vulnerable

populations: preschool children and the elderly.

For preschool children (0-4 years), infection incidence decreases on average by

76 cases per 10,000 compared to the counterfactual (95% CI: -136, -15.88) starting

in the second week after the break, and the effects persist until the fifth week. The

total decrease over the first 4 weeks after the start of the vacation accumulates to 217

cases fewer per 10,000 (95% CI: -362, -72.2) in an average season, a 26% reduction

compared to the 4 weeks pre-vacation average for this age group (of 824.8 cases per

10,000).

Adults also show a decline in ILI cases post-vacation. Although the absolute

decrease is smaller, the relative reduction is more pronounced. There is a significant

drop of 9 cases per 10,000 on average in the first week (95% CI: -13.2, -4.9), extending

until the third week. Over the first four weeks, the decrease totals 48.6 cases per

10,000 (95% CI: -74.9, -22.4) in an average season, a 55% reduction compared to the

pre-vacation average of 87.62 per 10,000. This underscores that school-aged children

are a significant source of infections for adults.

Finally, the 65+ population also experiences a decline in infections. Beginning

with the second week of vacation, there are, on average, 7 fewer cases per 10,000

(95% CI -13.23, -1.1) compared to the counterfactual. The protective effect extends

over the following five weeks, though it gradually wanes. Overall, the first 4 weeks

of vacation contribute to averting 30.3 cases per 10,000 (95% CI -50.9, -9.75) in this

age group in an average season, a 31% decrease from the 4 weeks pre-vacation period

(with average of 98.5 per 10,000).

The reduction in ILI cases across various age groups is likely due to decreased

intra-household transmission, with school-age children being key carriers. This high-

lights the broader protective impact of school closures beyond the immediate school

environment.

5The summary statistics including the fit of the model are presented in table A6
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Given the positive spillovers of school closures on at-risk age groups, a decrease

in mortality is expected. Figure 4 presents the results of the estimation where

the outcome variable is respiratory mortality, indicating that school closures in an

average season indeed contribute to a decline in respiratory disease-related deaths

among the elderly population aged 65 and above.

Figure 4: Event study: Respiratory Mortality
Note: Graph shows the impact of winter vacation on the ILI incidence by age group.
Each sub-figure represents results of the estimation of the event study in equation 1 on a
sub sample restricted to age groups 0-4,5-14,15-64, 65+. Line represents estimates of the
coefficients δT from equation where the outcome is number of reported cases in a given
county and week, per 10 000 inhabitants (of a given age-group). These parameters show
the change in incidence in week T , compared to the counterfactual without the vacation.
Shaded area represents 95% confidence interval for the estimates. Standard errors are
clustered at the region level.

Four weeks before the vacation, baseline single-week average respiratory mor-

tality among the elderly is 0.73 per 10,000. After the vacation starts, significant

declines occur in an average season: 0.0576 per 10,000 (95% CI: -0.1, -0.01) in the

third week and 0.093 per 10,000 in the fourth week (95% CI: -0.15, -0.03). While

the coefficient at later dates are negative, they are not statistically significant at

5%. The timing of the statistically significant reductions aligns with the incubation

to death period for influenza, consistent with the hypothesized impact of school

closures. The cumulative effect over weeks 2-5 is 0.21 fewer deaths per 10,000 (95%

CI: -0.4, -0.01) in an average season, a 7.2% decrease from the cumulative 4 weeks

pre-vacation average of 2.92 per 10,000.

These results confirm that student interactions significantly propagate influenza-

like illnesses. School closures, when implemented around the peak of the epidemic,

lead to a reduction in viral transmission across age groups and contribute to a

temporary decrease in seasonal mortality among high-risk groups, such as the elderly.
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Overall, these findings offer compelling justification for the implementation of school

closures as a public health strategy aiming to temporarily reduce the incidence and

mortality.

4 Discussion

This study’s causal estimates of the effects of school closures on ILI incidence

and respiratory mortality highlight the significant public health benefits. Analyz-

ing data from a natural experiment involving staggered school vacation schedules

reveals substantial reductions in ILI incidence across all age groups in an average sea-

son, with the most significant decrease of 75% among school-aged children. While

children often recover quickly from mild symptoms, very young children and the

elderly are more susceptible to severe complications, making their cases more im-

pactful from a healthcare perspective. School closures also reduce incidence in these

high-risk groups by breaking the transmission chain, demonstrating the critical role

school-aged children play in spreading influenza. Consequently, the implementation

of vacations not only decreased the incidence among the elderly, a group particularly

vulnerable to severe outcomes from influenza, but also attenuated their respiratory

mortality.

This study’s impact on incidence is at the higher end compared to other findings.

Similar work by Adda [5] reports decreases of 30-40% in children, 20-30% in adults,

and 20% in the elderly. Adda’s inclusion of preschool children and older teenagers in

the children’s group may account for the smaller effect size. Additionally, the confi-

dence intervals for the elderly in Adda’s study overlap with the estimates reported

here.

Comparative studies from China [7], Argentina [21], Israel [10], and the USA

[11] typically demonstrate smaller effects ranging from 13 − 42% decline for chil-

dren. Nonetheless, these studies, often compare incidence ratios during or post-

break to the periods before, rather than to a counterfactual scenario in the absence

of holidays—potentially underestimating the effects relative to the causal estimates

presented here. Chowell et al. [23], found reductions similar to this study in Chile,

with a 67% decline in children and 37% in adults. The estimates from Cauchemez

et al. [6], which are informed by a robust mathematical model of transmission, also

reported smaller reductions.

Regarding mortality, while no direct comparisons exist, the magnitude of signifi-

cant effects on the elderly in this study is more than double the increase in influenza

mortality linked to local events, such as the presence of a home team in the Super
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Bowl, associated with a mortality increase of 0.07 per 10, 000 among the elderly [24].

According to my estimates in the Polish context, and considering an average

season with recess close to the epidemic peak, winter vacations may prevent approx-

imately 107, 400 infections annually among school-age children, 25, 736 infections in

the 0 − 4 age group, 125, 580 cases among adults aged 15 − 64, and 18, 177 cases

among those aged 65 and older in the four weeks following the vacation. Crucially,

disrupting transmission during the winter vacation is estimated to prevent, on aver-

age, 101 deaths in the elderly population annually in the five weeks after vacation.

It is important to note that the presented estimates reflect the average effects

across multiple seasons. Vacation during each individual season may have its own

distinct impact, influenced by factors such as the severity of the epidemic or the

timing of the vacation relative to the peak. The event study approach aggregates

these effects, providing an average summary across the contexts in the sample.

One limitation of this analysis is that most school vacations in Poland occur

symmetrically in short time around the epidemic peak, typically within five weeks

before or after (see Figure A.19 for the distribution). As a result, the findings are

most applicable to interventions implemented near the peak, a period when such

measures may be most effective. In contrast, the effects of vacations scheduled

further from the peak may be limited, as the potential impact of public health

interventions could vary depending on the current influenza activity.

To better understand how the effects vary across different contexts, I perform

a heterogeneity analysis. Ideally, one would desegregate the analysis by individual

season; however, due to limited statistical power, this approach introduces excessive

noise in the estimates. Instead, I group the seasons by factors likely to influence the

overall effect, such as epidemic severity and timing of vacation relative to the peak.

When desagregated by epidemic severity, the results for incidence and mortality are

presented in Figures A.12 and A.13, with corresponding cumulative effect estimates

provided in Tables A3 and A4. For timing of vacation relative to the peak, see

Figure A.14 and Table A5.

As anticipated, the effect is more pronounced during severe epidemics, with a

greater number of infections and deaths being averted during these periods. This

finding aligns with existing literature [12], which observed limited effects in milder

seasons when epidemic activity was less intense.

Regarding the timing relative to the epidemic peak, splitting the sample leads

to noisier estimates. Nevertheless, the results suggest that the effects of school va-

cations occurring before and during the peak are consistent with the overall average

estimate. In contrast, vacations scheduled after the peak show a diminished effect.
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It is important to note that in my sample, vacations rarely occur significantly after

or before the peak, which should be considered when interpreting these estimates.

Another limitation is that the data from primary care reports may under-detect

infections if individuals avoid seeking medical attention. Additionally, not all doctors

report cases, leading to missing data, and not all reported cases are confirmed as

influenza.

Vacation periods may influence the propensity to visit a doctor, but this is un-

likely to account for the observed effect for four reasons. Firstly, changes in reporting

during the vacation cannot explain the decline observed after the vacation period.

Notably, the continued decrease in the third week, despite students having returned

to school, is statistically significant and large compared to the mean. While increased

travel and related absences may contribute to decreased reporting during the recess,

the subsequent drop after the recess cannot be attributed to these absences, as stu-

dents must return to school the following week. If vacation only affected reporting

and not actual infections, there should be no effect in the third week when reporting

normalizes. However, the effects persist, suggesting that the observed drop during

vacation corresponds to an initial decrease in the pool of infected individuals due

to fewer interactions, which subsequently leads to a lower source of new infections

and hence lower incidence after the vacation. This pattern is inconsistent with a

temporary decrease in reporting, as this could not produce a persistent drop after

the vacation.

Secondly, it is unlikely that elderly people change their reporting patterns due to

school vacations, yet the significant effects in this group further indicate a genuine

decline in infections.

Thirdly, while the number of doctors submitting reports changes during vacation

(see Figure A.33), the regression analysis controls for the number of reporting physi-

cians, adjusting for any fluctuations. The estimated effect on infections is on top

of the changes in reporting. Furthermore, the vacation effects remain strong even

when using the number of reports per doctor as the outcome (see Figure A.34),

which would not be the case if the effects were solely due to fewer reporting doctors.

Detailed analysis of the impact on reporting doctors and alternative outcomes is

provided in the appendix section A.8.

Fourthly, there is a clear effect on mortality, where reporting issues are irrelevant

because mortality data are derived from administrative records, and the timing of

death is unlikely to be manipulated.

An additional limitation of this method is that it can only evaluate short-to-

medium term effects, not long-term effects. Specifically, it cannot assess whether
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having a vacation versus not having a vacation affects the cumulative rate of infec-

tions over an entire season, as all counties eventually have vacations. While variation

in timing helps to identify short and medium term effects, it is not possible to de-

termine what would happen without vacations altogether. This leaves open the

possibility that some of the infections prevented by vacations may occur later in the

season. To address this concern, I produce an additional analysis of the effect on

the growth rate and incidence in an extended window.

Epidemic models predict that school closures decrease the growth rate of infec-

tions compared to the counterfactual, followed by a relatively higher growth rate

upon reopening due to a larger susceptible population. This pattern is observed

in Figure A.10, where the weekly growth rate of cases is used as the outcome in

equation (1) to show the causal effect of vacations on growth rates. Depending on

the relative magnitudes of these effects, there may either be a catch-up in incidence

after vacations-if the post-reopening growth offsets the initial decline-or no catch-up

if it does not.

To empirically investigate potential ’catch-up’ later in the season, I extend the

analysis window to 16 weeks (Figure A.9). In the event study framework, a catch-up

would manifest as an increase in incidence in weeks post-reopening compared to the

counterfactual, offsetting the previous decline. The analysis reveals no evidence of a

significant rebound in incidence. Although the growth rate increases post-vacation,

it does not raise total cases to or above the levels observed without school closures.

Most coefficients in Figure A.9 for weeks 0–16 across all age groups are zero or

negative, indicating no meaningful increase in cases up to 16 weeks post-closure

compared to the no-vacation scenario. Furthermore, the upper bounds of the 95%

confidence intervals for the cumulative effect over this period remain negative for all

age groups except adults, where it includes zero (Table A2). While a rebound could

theoretically occur after the 16-week window, this is unlikely, as infection rates are

typically very low by June. Evaluating the effect throughout the totality of the

season is technically not feasible, as it would require comparisons with seasons in

which some counties do not have vacations. In section A.7, I also test whether

having earlier versus later vacations affect cumulative incidence in a season, though

the timing difference is at most four weeks. These small differences in timing do not

produce statistically significant differences in total incidence.

Limitations also include the imperfect alignment between the epidemic and

school calendars due to the predefined week structure in the Polish data, which

could result in the misassignment of vacation periods by up to three days. This may

also limit generalizability to diseases with different transmission patterns. Another
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concern arises from the resulting uneven duration of weeks, which vary between 7

and 8 days. The median week length is 7 days (mean = 7.6, SD = 0.76), with a

range from 6 to 9 days. Nonetheless, this variation is unrelated to random vacation

timing and any potential bias is addressed through the use of fixed effects, ensuring

that comparisons between early and late counties are based on the same week length.

Additionally, to enhance interpretability, I include a robustness analysis where all

cases are scaled to a 7-day equivalent (Figure A.11), and the results remain nearly

identical to the main results.

Despite these limitations, the results appear robust, as substantiated by the

various robustness checks, exploring alternative outcome definitions, specifications,

and methodological approaches.

While school closures can effectively reduce infections and mortality, this benefit

is just one part of the decision. Policymakers need to consider the trade-offs, bal-

ancing health gains against educational disruptions and the extra caregiving load

on families.
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A Appendix: For Online Publication

Figure A.1: Counties with data available
Note: Shaded areas represent counties which made their data available
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Figure A.2: Event study: Mortality due to external causes by age
Note: Graph shows the impact of winter vacation on the external causes mortality (cat.

V in ICD-10) by age. Each sub-figure represents results of the estimation of the event

study in equation 1 on a sub sample restricted to age groups 0-4,5-14,15-64, 65+. The

outcome is the number of deaths due to external causes in the given age category in a

county i and week t per 10 000 of inhabitants (of given age). Hence the coefficients show

the change in the number of deaths in each week prior and after the vacation, where

week 0 is the first week of vacation. Shaded area represents 95% confidence interval for

the estimates.
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A.1 Robustness Checks

Figure A.3: Event study: log(Incidence+1)
Note: Graph shows the impact of winter vacation on the weekly incidence of infections.

Each sub-figure represents results of the estimation of the event study in equation 1 on

a sub sample restricted to age groups 0-4,5-14,15-64, 65+. The outcome is log of the

incidence plus 1. Hence, the coefficients show the percentage change in the incidence

in each week prior and after the vacation, where week 0 is the first week of vacation,

compared to counterfactual without vacation. Shaded area represents 95% confidence

interval for the estimates. Errors are clustered at the region level.
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Figure A.4: Event study: log(Mortality+1)
Note: Graph shows the impact of winter vacation on the weekly respiratory mortality.

Each sub-figure represents results of the estimation of the event study in equation 1 on

a sub sample restricted to age groups 0-4,5-14,15-64, 65+. The outcome is log of the

mortality plus 1. Hence, the coefficients show the percentage change in the incidence

in each week prior and after the vacation, where week 0 is the first week of vacation,

compared to counterfactual without vacation. Shaded area represents 95% confidence

interval for the estimates. Errors are clustered at the region level.
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Figure A.5: Poisson Regression: Infections
Note: Graph shows the impact of winter vacation on the external causes mortality (cat.

V in ICD-10) by age. Each sub-figure represents results of fitting a Poisson regression

following the specification of the event study in equation 1 on a sub sample restricted

to age groups 0-4,5-14,15-64, 65+. The outcome is the number of reported infections

in a given county and week. Hence, the coefficients show the percentage change in the

incidence in each week prior and after the vacation, where week 0 is the first week of

vacation, compared to counterfactual without vacation. Shaded area represents 95%

confidence interval for the estimates.
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Figure A.6: Poisson Regression: Deaths
Note: Graph shows the impact of winter vacation on the external causes mortality (cat.

V in ICD-10) by age. Each sub-figure represents results of fitting a Poisson regression

following the specification of the event study in equation 1 on a sub sample restricted

to age groups 0-4,5-14,15-64, 65+. The outcome is the number of respiratory deaths

in a given county and week. Hence, the coefficients show the percentage change in the

incidence in each week prior and after the vacation, where week 0 is the first week of

vacation, compared to counterfactual without vacation. Shaded area represents 95%

confidence interval for the estimates.

25



Figure A.7: Robust DiD: Incidence
Note: Graph shows the robust event study estimates based on [18]. Each sub-figure

represents results of the estimation on a sub sample restricted to age groups 0-4,5-14,15-

64, 65+. The outcome is the number of reported infections in the given age category in

a county c and week w per 10 000 of inhabitants (of given age). Each season is treated

as a separate experiment. Only the effect up to week 3 can be estimated, because the

latest region starts vacation 4 weeks after the earliest region and hence there is no more

untreated units. Standard errors are boostrapped, with randomization at the regional

level. Shaded area represents 95% confidence interval for the estimates.
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Figure A.8: Robust DiD: Mortality
Note: Graph shows the robust event study estimates based on [18]. Each sub-figure

represents results of the estimation on a sub sample restricted to age groups 0-4,5-14,15-

64, 65+. The outcome is the number of deaths in the given age category in a county c

and week w per 10 000 of inhabitants (of given age). Each season is treated as a separate

experiment. Only the effect up to week 3 can be estimated, because the latest region

starts vacation 4 weeks after the earliest region and hence there is no more untreated

units. Standard errors are boostrapped, with randomization at the regional level. Shaded

area represents 95% confidence interval for the estimates.
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Figure A.9: Incidence Effect up to 16 Weeks
Note: Graph shows the impact of winter vacation on the ILI incidence by age group.

Each sub-figure represents results of the estimation of the event study in equation 1 on

a sub sample restricted to age groups 0-4,5-14,15-64, 65+. Line represents estimates of

the coefficients δT from equation where the outcome is number of reported cases in a

given county and week (up to week 16 after vacation), per 10 000 inhabitants (of a given

age-group). These parameters show the change in incidence in week T , compared to the

counterfactual without vacation. Shaded area represents 95% confidence interval for the

estimates. Standard errors are clustered at the region level.
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Figure A.10: Effect on Cases Growth Rate
Note: Graph shows the impact of winter vacation on the ILI growth rate by age group.

Each sub-figure represents results of the estimation of the event study in equation 1 on

a sub sample restricted to age groups 0-4,5-14,15-64, 65+. Line represents estimates of

the coefficients δT from equation where the outcome is the growth rate of cases. Growth

rate is defined as the difference in log of cases between current and previous week, where

-1 is assigned for weeks without cases following [19]. These parameters show the change

in growth rate in week T , compared to the counterfactual without vacation. Shaded area

represents 95% confidence interval for the estimates. Standard errors are clustered at

the region level.
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Figure A.11: Effect on Incidence with Standardized Week
Note: Graph shows the impact of winter vacation on the ILI incidence by age group.

Each sub-figure represents results of the estimation of the event study in equation 1 on a

sub sample restricted to age groups 0-4,5-14,15-64, 65+. Line represents estimates of the

coefficients δT from equation where the outcome is number of reported cases per 10 000

inhabitants in a given county and standardized week. The number of cases is adjusted by

scaling them to a uniform 7-day period, i.e., multiplying by 7
week length . These parameters

show the change in incidence in a standardized week T , compared to the counterfactual

without vacation. Shaded area represents 95% confidence interval for the estimates.

Standard errors are clustered at the region level.
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Figure A.12: Effect on Incidence by Season Severity
Note: Graph shows the impact of winter vacation on the ILI incidence by age group and season

severity. Each sub-figure represents results of the estimation of the event study in equation 1

on a sub sample restricted to age groups 0-4,5-14,15-64, 65+ and to either more or less severe

epidemics. More severe epidemics are those epidemics that had total incidence of at least

1000 cases per 10 000. Line represents estimates of the coefficients δT from equation where

the outcome is number of reported cases per 10 000 inhabitants in a given county and week.

These parameters show the change in incidence in a week T , compared to the counterfactual

without vacation. Shaded area represents 95% confidence interval for the estimates. Standard

errors are clustered at the region level.
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Figure A.13: Effect on Respiratory Mortality by Season Severity among the elderly
Note: Graph shows the impact of winter vacation on the weekly respiratory mortality of

individuals 65+ by the season severity. Each sub-figure represents results of the estimation of

the event study in equation 1 on a sub sample restricted to age group 65+ and to either more

or less severe epidemics. More severe epidemics are those seasons that had total incidence of

at least 1000 cases per 10 000. Line represents estimates of the coefficients δT from equation

where the outcome is number of respiratory deaths per 10 000 inhabitants in a given county

and week. These parameters show the change in mortality in a week T , compared to the

counterfactual without vacation. Shaded area represents 95% confidence interval for the

estimates. Standard errors are clustered at the region level.
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Figure A.14: Effect on Incidence by Peak Timing
Note: Graph shows the impact of winter vacation on the ILI incidence by age group

and the timing of the peak. Each sub-figure represents results of the estimation of

the event study in equation 1 where the relative week is interacted with an indicator

for whether the vacation start occurs two week before, withing or two weeks after the

peak. Line represents estimates of the coefficients. These parameters show the change

in incidence in a week T , compared to the counterfactual without vacation for three

scenarios regarding the peak timing. Shaded area represents 95% confidence interval for

the estimates. Standard errors are clustered at the region level.
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Table A1: Cumulative 4-Week Decline in Incidence

Age Group Cumulative 4-Weeks 95% Confidence 4-Weeks Average Percent
Decline per 10,000 Interval Pre-Vacation per 10,000 Effect

0-4 years -217 [-362, -72.2] 824.8 -26%
5-14 years -272 [-414, -130] 364.6 -75%
15-64 years -48.6 [-74.9, -22.4] 87.62 -55%
65+ years -30.3 [-50.9, -9.75] 98.5 -31%

Note: Cumulative 4-Weeks Average Pre-Vacation Incidence and cumulative 4-Weeks
decline by age group estimated as the linear combination of the event study estimates
from equation 1

Table A2: Cumulative Effects of Weeks 0-16 on Incidence

Model Estimate 95% Confidence Interval

0-4 years -477 [-671, -282]
5-14 years -364 [-706, -22.5]
15-64 years -65.2 [-150, 19.6]
65+ years -74.4 [-128, -20.4]

Note: Cumulative effect of weeks 0-16 estimated as the linear combination of the event

study estimates.

Table A3: Cumulative 4-Week Decline in Incidence by Season’s Severity

Less Severe Season More Severe Season
Age Group Estimate 95% CI Estimate 95% CI
0-4 -67.5 [-265, 130] -366 [-756, 23.4]
5-14 -177 [-261, -93.7] -439 [-612, -265]
15-64 -31.2 [-60.1, -2.18] -78 [-94.1, -61.9]
65+ -18.3 [-38.9, 2.35] -49.7 [-67.5, -32]

Note: Cumulative effect of weeks 0-4 on incidence estimated as the linear combination

of the event study estimates interacted with season’s severity dummy. Severe season is

defined as the one with total incidence of at least 1000 per 10 000.

Table A4: Cumulative Decline in Mortality in Weeks 2-5 by Season’s Severity

Less Severe Season More Severe Season
Estimate 95% CI Estimate 95% CI

0-4 0.00876 [-0.0192, 0.0367] 0.041 [-0.0295, 0.112]
5-14 -0.003 [-0.0171, 0.0111] -0.015 [-0.0411, 0.0111]
15-64 0.00185 [-0.00845, 0.0122] -0.00921 [-0.0295, 0.0111]
65+ -0.165 [-0.408, 0.0782] -0.385 [-0.873, 0.104]

Note: Cumulative effect of weeks 2-5 after vacation on respiratory mortality estimated

as the linear combination of the event study estimates interacted with season’s severity

dummy. Severe season is defined as the one with total incidence of at least 1000 per 10

000.
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Table A5: Cumulative 4-Week Decline in Incidence by Peak Timing

Age More than 2w before Within 2 of peak More than 2w after peak
Group Estimate 95% CI Estimate 95% CI Estimate 95% CI
0-4 -258.9 [-488.6, -29.3] -196.7 [-501.4, 107.8] -356.6 [-533.3, -179.834]
5-14 -350.5 [-483.2, -217.7] -255.2 [-432.0, -78.4] -143.5 [-399.9, 112.883]
15-64 -61.4 [-79.9, -42.9] -49.9 [-73.3, -26.5] -21.5 [-111.5, 68.3]
65+ -40.9 [-53.5, -28.3] -44.8 [-64.0, -25.7] -18.9 [-64.4, 26.5]

Note: Cumulative effect of weeks 0-4 on incidence estimated as the linear combination

of the event study estimates interacted with season’s severity dummy. Severe season is

defined as the one with total incidence of at least 1000 per 10 000. Sample includes only

seasons with full number of weeks.

Table A6: Summary Statistics

Incidence

0-4 5-14 15-64 65+

Observations 72,231 72,003 72,003 72,239
R2 0.84 0.86 0.8 0.8
Within R2 0.05 0.13 0.11 0.09

Mortality

0-4 5-14 15-64 65+

Observations 374,899 374,899 374,899 336,107
R2 0.078 0.095 0.074 0.17
Within R2 0.00009 0.00008 0.00005 0.00024

Note: These are summary statistics from estimating the regression in equation 1 and

represented in figures 3 and 4
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A.2 Additional Plots

Figure A.15: Incidence by Season
Note: Graph shows the average incidence in each week of each season. Note that in

earlier years the reporting was relatively low which resulted in low incidence. Week 1

corresponds to the first week of July (of year t-1) and year is divided into 48 weeks.
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Figure A.16: Incidence by Age and Vacation Week
Note: Graph shows the average incidence in each week divided by groups of the vacation

timing (first week of vacation on the left) and age (on the top). Week 1 corresponds to

the first week of July and year is divided into 48 weeks.
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Figure A.17: Mortality by Season
Note: Graph shows the average respiratory mortality in each week of each season. Week

1 corresponds to the first week of July (of year t-1) and year in the mortality data is

divided into 52/3 weeks.
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Figure A.18: Mortality by Age and Vacation Week
Note: Graph shows the average respiratory mortality in each week divided by groups of

the vacation timing (first week of vacation on the left) and age (on the top). Week 1

corresponds to the first week of July and year in the mortality data is divided into 52/3

weeks.
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Figure A.19: Distribution of Vacation Weeks Relative to Seasonal Peaks
Note: The graph displays the distribution of the number of weeks between the vacation

week and the peak week in the corresponding season. The X-axis represents the number

of weeks, with negative values indicating that the vacation occurs before the peak and

positive values indicating that it occurs after.

A.3 Event Study: Impact on Transmission

This event study looks at the impact of the winter vacation on the transmission

of the virus. It measures the impact of the break on the interactions which fuel the

spread of the virus. School recess disrupts interactions in weeks 0 and 1 (recess lasts

two weeks). Hence the virus will have a lower reproduction rate from week 0 to 1

and from week 1 to 2. The event study follows the equation:

Icwy

Lcwy

=
10∑

T=−5

αT I{wy−(wy)Vc = T}cwy ∗ S̃cwy
Ĩcwy

Lcwy

+α0S̃cwy
Ĩcwy

Lcwy

+δXcwy.+ecwy (2)

Where the Lcwy represents the number of reporting doctors in county c, week

w and year y. The number of infected individuals ( Icwy ) is the number of newly

reported cases. The susceptible share S̃cwy is the total population minus the cumu-

lative number of reported infections since the start of the epidemic season (epidemi-

ological week 24).

Figure 15 shows the results. Vacation clearly disrupts the transmission of the

flu, as evidenced by the high decline in the reproduction of the virus in weeks 1 and
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2. In other words, the same amount of infections results in fewer secondary cases in

weeks 1 because of fewer interactions among children in respective previous weeks.

As expected, the parameter returns to the pre-vacation value three weeks after the

vacation began as children start interacting again at a usual rate in week 2.

Figure A.20: Impact of winter vacation on transmission
Note: Graph shows the impact of winter vacation on the reported influenza cases. Lines

represents estimates of the coefficients αT from the event study in equation 2 where

the outcome has been changed to log(
Ii,t
Li,t

+ 1). Shaded area represents 95% confidence

interval for the estimates.

A.4 Motivating Model

This section interprets the impact of school closures through the parameters

of a simple SIR model. Specifically, school closures directly affect infection rates

by temporarily reducing the contact rate and indirectly by decreasing the stock of

infections. This is not presented as an accurate depiction of the contagion process

but rather as a simple illustration of how the policy operates. In the following

subsection, I relate the reduced-form estimates from the event study to this model.

I use the ”Susceptible-Infected-Recovered” (SIR) epidemiological model (similar

to the one used in [4]). It is a framework wherein an individual’s state transitions

through being susceptible, infected, and then recovered. The evolution of the in-

fected population within this model is guided by both the inflow of new infections

and the outflow of recoveries, as detailed in the following equation:

It,a = βaa
St−1,a

Pt−1,a

It−1,a +
∑
b ̸=a

βab
St−1,a

Pt−1,a

It−1,b (3)

The susceptible population evolves according to:
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St,a = St−1,a − It,a (4)

In this equation, It,a represents the number of infected individuals in age group

a at time t, with the infection dynamics determined by three principal factors:

1. Intra-Age-Group Infections: New infections within age group a are propor-

tional to the transmission rate ( βaa ) within this age group between susceptible

and previously infected individuals in that age group ( It−1,a ), adjusted for the

the proportion of the population still susceptible ( St−1,a/Pt−1,a). Transmission

rate is a function of contact rate and per-contact transmission probability.

2. Inter-Age-Group Infections: New infections stemming from contacts with

individuals from age group b ( βab ), summed over all age groups.

3. Recoveries: Individuals who were sick in the previous time period recovers

and add to the susceptible population.

Equation 4 can be used to demonstrate how the policy of school closures impacts

infection levels by temporarily reducing contact rates among school-aged children,

leading to a decrease in the parameter β5−14,5−14. This reduction in contact rates

results in lower transmission and, consequently, an immediate decline in infections

following the start of school vacations. Importantly, the effects of this intervention

may extend beyond the vacation period, even after the contact rate has returned

to its prior level. As the number of infected individuals decreases, the likelihood of

new infections correspondingly falls, potentially maintaining reduced infection rates

for an additional 2 to 3 weeks after the recess period. Furthermore, the decline in

infections in this group, can fuel a further decline in other age groups.

A.5 Event Study Coefficients

The event study coefficients represent reduced-form estimates of the policy’s

treatment effects on infections and deaths as the difference between actual outcome

in a given week and counterfactual outcome that would have occured in that week

without vacation. They are independent of the underlying transmission model spec-

ification. While this approach provides robust estimates that are less sensitive to

model misspecification, it may be valuable to illustrate how these coefficients relate

to parameters in a potential transmission model. This section aims to establish this

relationship, focusing on a simplified SIR (Susceptible-Infectious-Recovered) model
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for intuitive understanding, while acknowledging that more complex models could

be employed for a more comprehensive analysis.

Event study estimates can be conceptualized as a series of difference-in-differences

estimates. They approximate the change in outcomes between the time of vacation

implementation and an excluded period within a county and age group (first differ-

ence), compared to the same change in a control county that has not yet experienced

vacation (second difference). Formally, following Sun and Abraham [25], under the

assumption of parallel trends, no anticipation, treatment effect heterogeneity across

treatment waves, we can express this as:

δta =
∑
c,a

ωcE [(Ic,t,a(1)− Ic,t,a(0))] (5)

Where:

• δta is the event study coefficient for time t and age group a

• e is the excluded period

• c is a treated county

• ωc are weights

• Ic,t,a(1) is the outcome in county c, at relative time t, and age group a if treated

• Ic,t,a(0) is the counterfactual outcome in county c, at relative time t, and age

group a had it been non-treated. Typically it’s also a function of outcomes in

a county which has not been treated yet.

Under these assumptions, the coefficients represent the average treatment effect

at relative period t. In other words, they indicate the difference between what

occurs t periods after the vacation versus what would happen in that week without

the vacation.

It is important to note that this interpretation is only valid under the stated

assumptions. Nonetheless, in the context of this study, these assumptions are likely

satisfied.

Firstly, the treatment timing is randomly assigned as counties are quasi-randomly

assigned to the vacation group. Therefore, the untreated county k and its outcome

Ik,t,a serves as a valid counterfactual for what would have occurred in county c with-

out the vacation, that is: E(Ic,t,a(0)) = E(Ik,t,a). The estimator requires a weaker

assumption: that the trends in treated and untreated counties would be parallel

(in expectation) in the absence of treatment, that is: E(Ic,t,a(0) − Ic,−3,a(0)) =
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E(Ik,t,a − Ik,−3,a). Given random assignment, there is no reason to expect a differ-

ence between the groups of counties, and consequently, their trends should evolve

in parallel.

Secondly, the no anticipation assumption requires that there are no effects during

or before the reference period. Since the reference period is set to three weeks before

the vacation, it is very unlikely to be affected. This assumption would be violated if

people behaved differently knowing that a vacation will happen three weeks ahead,

which is improbable.

The final assumption states that the treatment effect in counties treated early

and counties treated late would be the same. Random assignment ensures that

these counties should, on average, be similar, which limits concerns regarding these

assumptions. However, differences can still arise if the counties having vacations at

different times have, for instance, different susceptible populations at the time of

treatment. While it is likely that counties with later vacations might have smaller

susceptible populations, all counties are treated within four weeks, making signifi-

cant differences unlikely. To address this concern, I also provide estimates from a

method robust to this issue designed by Callaway and Sant’Anna [18].

Given the parallel trends assumption, the difference should be zero before the

policy implementation, as the treatment only affects outcomes post-intervention.

Assuming the policy starts at time t = 0, we expect:

δta = 0 for t < 0 (6)

A.5.1 Relating Event Study Coefficients to SIR Model Parameters

To illustrate the relationship between event study coefficients and transmission

model parameters, we will use a simplified age-structured SIR model. Let Sc,t,a, Ic,t,a,

and Rc,t,a represent the number of susceptible, infectious, and recovered individuals,

respectively, in county c, at time t, for age group a. The total population in each

group is denoted by Pc,t,a.

We define the following transmission rates:

• βs
a,b: transmission rate from age group b to age group a during the school term

• βv
a,b: transmission rate from age group b to age group a during vacation

For simplicity, we assume that only school-aged children (5-14 years old) are

directly affected by school vacation, and other transmission rates stay constant.

This assumption can be relaxed in more complex models, to allow other groups to

44



be affected directly as well. I will also assume, for the clarity of the illustration, that

the effects is homogenous and hence the ωk can be ommited.

1. At the start of the intervention (t = 0) for school-aged children:

δ0,5−14 = E [Ic,0,5−14(1)− Ic,0,5−14(0)] (7)

= E

[
βv
5−14,5−14

Sc,−1,5−14Ic,−1,5−14

Pc,−1,5−14

+
∑

b ̸=5−14

β5−14,b
Sc,−1,bIc,−1,b

Pc,−1,5−14

]
(8)

− E

[
βs
5−14,5−14

Sc,−1,5−14Ic,−1,5−14

Pc,−1,5−14

+
∑

b ̸=5−14

β5−14,b
Sc,−1,5−14Ic,−1,b

Pc,−1,5−14

]
(9)

= E

[[
βv
5−14,5−14 − βs

5−14,5−14

] Sc,−1,5−14Ic,−1,5−14

Pc,−1,5−14

]
(10)

This coefficient represents the immediate effect of changing the transmission

rate due to vacation. Note that other age groups are not affected in this first

period.

2. For the subsequent period during vacation for school-aged children:

δ1,5−14 = E [Ic,1,5−14(1)− Ic,1,5−14(0] (11)

+ E

[
βv
5−14,5−14

Sc,0,5−14(1)Ic,0,5−14(1)

Pc,0,5−14

+
∑

b ̸=5−14

β5−14,b
Sc,0,bIc,0,b
Pc,0,5−14

]
(12)

− E

[
βs
5−14,5−14

Sc,0,5−14(0)Ic,0,5−14(0)

Pc,0,5−14

+
∑

b ̸=5−14

β5−14,b
Sc,0,5−14Ic,0,b
Pc,0,5−14

]
(13)

= E

[
βs
5−14,5−14

Sc,0,5−14(1)

Pc,0,5−14

Ic,0,5−14(1)− βv
5−14,5−14

Sc,0,5−14(0)

Pc,0,5−14

Ic,0,5−14(0)

]
(14)

This coefficient captures both the change in transmission rates and the cu-

mulative effects on the stocks of susceptible and infected individuals in the

previous period.

3. For other age groups (b ̸= 5− 14), in the first week after vacation start:
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δ1,b = E [Ic,1,b(1)− Ic,1,b(0)] (15)

= E

[ ∑
a̸=5−14

βb,aIc,0,a
Sc,0,b

Pc,0,b

+ βb,5−14Ic,0,5−14(1)
Sc,0,b

Pc,0,b

]
(16)

− E

[ ∑
a̸=5−14

βb,aIc,0,a
Sc,0,b

Pc,0,b

+ βb,5−14Ic,0,5−14(0)
Sc,0,b

Pc,0,b

]
(17)

= E

[
βb,5−14

Sc,0,b

Pc,0,b

[Ic,0,5−14(1)− Ic,0,5−14(0)]

]
(18)

This coefficient reflects the indirect effects of the vacation on other age groups

through changes in the infection patterns of school-aged children.

4. After the vacation ends, for all age groups, the coefficient become complex

non-linear function of the cumulative effect on stocks of infected and susceptible

individuals in the previous periods.

δt,a = E [Ic,t,a(1)− Ic,t,a(0)] (19)

= E

[∑
b

βa,b
Sc,t−1,a(1)

Pc,t−1,a

Ic,t−1,b(1)

]
(20)

− E

[∑
b

βa,b
Sc,t−1,a(0)

Pc,t−1,a

Ic,t−1,b(0)

]
(21)

= E

[∑
b

βa,b

[
Sc,t−1,a(1)

Pc,t−1,a

Ic,t−1,b(1)−
Sc,t−1,a(0)

Pc,t−1,a

Ic,t−1,b(0)

]]
(22)

This coefficient captures the lingering effects of the vacation on infection patterns,

even after transmission rates return to pre-vacation levels.

A.5.2 Discussion and Limitations

While this framework provides insights into the relationship between event study

coefficients and SIR model parameters, it has several limitations in it interpretation:

1. Simplification: The model assumes a simple SIR structure. More complex

models (e.g., SEIR, SIAR) might provide more nuanced insights.

2. Parameter identification: The event study coefficients alone do not allow for
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direct identification of specific SIR model parameters. They provide aggregate

effects that combine multiple underlying parameters..

3. Spatial heterogeneity: The current framework does not explicitly model spatial

interactions between counties.

Despite these limitations, this approach offers valuable insights for policymak-

ers by providing causal treatment effects that are robust to model misspecification.

This simplified derivation serves to bridges the gap between reduced-form empir-

ical analysis and structural modeling, providing a more comprehensive toolkit for

epidemiological policy evaluation.

A.6 Simulations

A.6.1 Methodology

The goal of these simulations is to verify the performance of the estimation meth-

ods in a controlled setting where the true treatment effects are known. By comparing

the estimated treatment effects to the true treatment effects, we can assess the ac-

curacy of the methods. The treatment effects are defined as the differences between

outcomes with and without vacations.

A.6.2 Setting

1. Setting: Infection outcomes were generated for 381 Polish counties over 5

seasons for each of the age groups: 0-4, 5-14, 15-64, and 65+. The simulation

will produce outcomes aggregated at a weekly level for 48 weeks(as in the

original data) in each season.

A.6.3 Data Generation

2. Simulation Process without Vacation: The simulation iteratively calcu-

lated the number of new infections (I) and susceptible individuals (S) over

time according to the simple process below. This simplified process was cho-

sen for illustrative purposes, but similar results could be shown for other data

generating processes. Since the focus is on estimating the effects of a policy

on outcomes rather than particular parameters of the model, the estimation

is independent of the underlying data generating process.

It = min (βsIt−1St−1, 1)
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St = max(St−1 − It, 0)

Where It−1 and St−1 are 4 × 1 vectors of the share of infected and susceptible

populations in each age group. The time period corresponds to half a week to match

the generation time of influenza. Once the infections are generated at each step, the

number of infections is aggregated at a weekly level to assimilate the data used in

the paper.

3. Initialization: Initial susceptible (S0) and infected (I0) fractions were set at

0.85 and 5× 10−4, respectively, across all age groups.

4. Transmission Rates: The following transmission matrix was used in the

absence of school vacation (row and column entries are in order: 0-4, texttt5-

14, 15-64, and 65+).

• School Year Transmission Matrix (βs):
0.18 0.12 0.06 0.06

0.12 0.6 0.36 0.24

0.06 0.36 0.6 0.36

0.06 0.24 0.36 0.6


This results in the following infection patterns across the age groups:
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Figure A.21: Counterfactual Simulated Incidence without Vacation
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5. Process with Vacation: The process is identical to the one described above

until the vacation periods. Each county was randomly assigned to one of the

4 vacation periods. Vacation can start in weeks 18, 19, 20, 21. During the

vacation periods, the transmission matrix βs switches to βv to account for the

lower contact rate among school-aged children (2nd group):

• Vacation Transmission Matrix (βv):
0.18 0.12 0.06 0.06

0.12 0.06 0.36 0.24

0.06 0.36 0.6 0.36

0.06 0.24 0.36 0.6


After the vacation, the transmission matrix returns to βs. This procedure pro-

duces the following infection patterns across the age groups:
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Figure A.22: Actual Simulated Incidence with Vacation

Similarly, below are the infection patterns split by when the vacation occurs,

with a dotted line showing the first week of vacation. The outcomes before the

vacation are identical to the counterfactual scenario without vacations.

They change after the vacation. The difference between the counterfactual out-

comes and outcomes under the scenario of vacation is the treatment effect. It is

represented below for each vacation period and age group:
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Figure A.23: Actual Simulated Incidence with Vacation by Vacation Week
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Figure A.24: Treatment Effect by Vacation Week

Similarly, we can focus on the average treatment effect across all vacation peri-

ods for the 6 weeks before and 12 weeks after vacation (which corresponds to the

estimation target).
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Figure A.25: Average Treatment Effect

A.6.4 Estimation

6. Event Study Design: I analyze the impact of school vacations on infection

rates using an event study framework. The week of vacation start was treated

as the event week, with weeks relative to the event week being considered as

event time. I estimate the following regression:

ycwya =
12∑

T=−6
T ̸=−3

δTaI{wy − (wy)Vc = T}cwy + γwya + θcwa + λcya + ecwya

Please refer to the paper for the exact interpretation of the coefficients and

variables. The coefficients δTa represent the estimates of the treatment effects for

each age group a and week T relative to vacation. I fit models with multiple outcomes

as detailed below:

7. Outcomes:

• Levels: Direct levels of infection rates per 10000 (Icwya).

• Log Transformation: Log-transformed infection rates plus one (log(Icwya+

1)). The one aims to avoid the issue of the log of zero. The coefficient in

this case represents the treatment effect in percentage terms.
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• Inverse Hyperbolic Sine Transformation: A transformation similar

to the log but defined for all real numbers. The coefficient in this case

represents the treatment effect in percentage terms.

• Poisson Regression: Suitable for count data. The coefficient in this

case represents the treatment effect in percentage terms.

• Robust Difference-in-Differences: An estimator from Callaway &

Sant’Anna (2021). Used to address the potential bias stemming from the

heterogeneity in the treatment effects across cohorts. It can be used only

for periods for which untreated units exist. Hence, extrapolation further

than week 2 after the start of vacation is not possible because by that

time all counties are treated, meaning they experience vacation.

Below are the plots of estimation results plotted against the true target treatment

effect.

First is the estimation in levels vs the true treatment effect:
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Figure A.26: Estimates and True Effects: Levels

Second is the estimation with outcome in log vs the true percentage treatment

effect:

Third is the estimation with outcome in inverse hyperbolic sine transformation

vs the true percentage treatment effect:

Fourth is the estimation of the Poisson model vs the true percentage treatment

effect (relative to the mean in the untreated group):

52



15−64 65+

0−4 5−14

−5 0 5 10 −5 0 5 10

−0.6

−0.4

−0.2

0.0

−0.6

−0.4

−0.2

0.0

Weeks to vacation

E
ffe

ct
s 

pe
r 

10
00

0

Legend Estimates True Effects

Log estimates vs true percentage effects

Figure A.27: Estimates and True Effects: Log+1
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Figure A.28: Estimates and True Effects: Inverse Hyporbolic Sine

Last is the estimation of the robust difference-in-differences model vs the true

level treatment effects for units with available untreated comparison. It is only avail-

able for the number of periods corresponding to weeks with at least one untreated

county.
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Figure A.29: Estimates and True Effects: Poisson
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Figure A.30: Estimates and True Effects: Robust DiD

A.6.5 Bias Calculation

8. Bias Estimation: The bias of each estimation method was calculated by

comparing the estimated treatment effects to the true treatment effects from

the simulations.
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I sum the absolute differences between the estimated treatment effects and the

true treatment effects and divide it by the sum of true treatment effects. Thus, it

represents the total deviation from the true treatment effect in percentage terms.

Biasa =

∑12
t=−6 |δTa − TETa|∑12

t=−6 |TETa|

Age Levels Log(I+1) Inverse Hyperbolic Sine Poisson Robust DID
0-4 0.11 0.15 0.15 0.16 0.00
5-14 0.09 0.18 0.20 0.21 0.00
15-64 0.12 0.13 0.14 0.16 0.00
65+ 0.13 0.13 0.14 0.16 0.00

Table A7: Biases for Different Methods and Age Groups

A.6.6 Discussion

1. Levels

• Description: This method estimates the effects on direct levels of infection

rates per 10,000 individuals in an event study framework.

• Results: The plots show that the level estimates closely track the true treat-

ment effects across all age groups. The deviations are relatively small, indi-

cating good accuracy.

• Bias: The total bias for this method is relatively small and ranges from 0.09

to 0.13 across different age groups, with the lowest bias in the 5-14 age group

and the highest in the 65+ age group. Most of the estimates are conservative,

slightly underestimating the true effect initially and overestimating it in future

periods. This difficulty in extrapolating results for future periods is linked to

potential heterogeneity of the treatment effect, as discussed in [17]. This issue

is addressed by the robust difference-in-differences method.

2. Log Transformation (Log(I+1))

• Description: This method is an event study which uses a log transformation

of the infection rates (plus one) to avoid the issue of taking the log of zero.

The coefficients aim to represent the treatment effect in percentage terms.

• Results: The log estimates are slightly less accurate than the level estimates,

particularly for the younger age groups (0-4 and 5-14). However, they still

follow the true treatment effects reasonably well.
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• Bias: The bias ranges from 0.13 to 0.18, with the highest bias observed in the

5-14 age group. This indicates a higher tendency to overestimate or underesti-

mate percentage changes compared to the level estimates. This method tends

to overestimate the impact at the beginning of the treatment and underesti-

mate the long-term impact.

3. Inverse Hyperbolic Sine Transformation

• Description: This transformation is similar to the log but defined for all real

numbers. It is useful for handling data with zeros or negative values.

• Results: The results are comparable to the log transformation, with slightly

higher deviations in the younger age groups. The method captures the overall

trend of the true treatment effects but with more variability.

• Bias: The bias is similar to the log transformation, ranging from 0.14 to 0.20.

The highest bias is again in the 5-14 age group, suggesting similar strengths

and weaknesses as the log transformation.

4. Poisson Regression

• Description: This method is suitable for count data and represents the treat-

ment effect in percentage terms relative to the mean in the untreated group.

• Results: The Poisson estimates perform relatively worse compared to other

methods.

• Bias: The bias ranges from 0.16 to 0.21, with the highest bias in the 5-14

age group. While the Poisson method effectively handles periods with zero

infections, it comes at the cost of slightly higher bias.

5. Robust Difference-in-Differences (DID)

• Description: This method from Callaway and Sant’Anna [18] addresses bias

from treatment effect heterogeneity and is only available for periods with un-

treated counties. It minimizes bias by comparing treated and untreated units

over time, thus avoiding any extrapolation.

• Results: The Robust DID method shows the closest match to the true treat-

ment effects for counties which have an untreated comparison available. It

performs consistently well across all age groups.
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• Bias: This method is unbiased. This highlights its strength in providing ac-

curate estimates, especially when heterogeneity is a concern. However, the

long-term effects cannot be extrapolated because, after three weeks, all coun-

ties have experienced vacations, and there is no pure control group.

Comparison of Method

Across all methods, those expressed in levels perform the best and give a rela-

tively clear picture of the policy’s effects. The event study in levels performs better

than event studies with other outcome formulations and has relatively little bias.

The bias can be further reduced by using the robust method, but it comes at the

cost of long-term extrapolation.

In particular, all counties experience vacation within four weeks. Hence, for the

group of counties having vacation first, there exists a pure control for the next three

weeks (counties which experience vacation last). After that time, an extrapolation

using previously estimated treatment effects is necessary, hinging on the assumption

that treatment effects are the same across all groups. This may not be true for

various reasons [25].

The robust difference-in-differences (DID) method outperforms traditional DID

methods in handling the differential treatment timing and the treatment effect het-

erogeneity. The robust DID method, developed by Callaway and Sant’Anna [18],

effectively compares treated and untreated units over time without using extrapo-

lation, hence it has a lower bias. It provides the best estimate for the short-term

impact of the vacations. However, the robust DID method has its limitations. It can

only interpolate results within a short window when untreated units are available,

making it less effective for longer-term extrapolation.

A.7 Vacation Timing and Cumulative Burden

In this section, I describe the methodology used to estimate the effect of vacation

timing on the cumulative incidence and mortality in a season. Estimating the impact

of having versus not having a vacation is not feasible because all counties eventually

have vacations. Instead, I focus on the timing of vacations.

First, I aggregate all incidence (or mortality) across the season for each county

and age group, resulting in one observation per county, age group, and season. This

aggregated measure is then regressed on indicators of vacation timing, controlling

for county and season fixed effects.

I use two types of indicators for vacation timing. The first set of indicators

consists of dummies representing the absolute week of vacation, defined in terms of
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weeks since the start of July. I take the first possible vacation week (week 28) as

the reference point. The coefficients δw from this regression represent differences in

cumulative incidence for vacations taken in week w compared to week 28, as shown

in Equation 23.

yita =
32∑

w=29

δwI{vacit = w}+ αi + γt + eita (23)

Here, yita denotes the cumulative incidence (or mortality) for county i, age group

a, and season t. The term I{vacit = w} is an indicator variable that equals 1 if the

vacation for county i in season t occurs in week w. The terms αi and γt represent

county and season fixed effects, respectively, and eita is the error term.

The second set of indicators measures the timing of vacations relative to the peak

incidence week. I first identify the week with the maximum incidence in each county

and season. I then calculate the difference between this peak week and the vacation

week, categorizing the differences into five bins: more than 4 weeks before the peak,

4-2 weeks before the peak, 1 week before to 1 week after the peak, 2-4 weeks after

the peak, and more than 4 weeks after the peak. The bin ”more than 4 weeks before

the peak” serves as the reference point. This specification is represented in Equation

24.

yita =
∑

w=bins

δwI{relit = w}+ αi + γt + uita (24)

In this equation, I{relit = w} is an indicator variable that equals 1 if the vacation

for county i in season t falls into the wth relative bin. The other terms are defined

as in Equation 23.

The results are presented in the figures below. Points represent point estimates

of coefficients δw with w on the x axis, and bands represent 95% confidence intervals

for the coefficients.

As shown on the figures, virtually none of the coefficients are statistically sig-

nificant from zero at 5% level, suggesting that the timing of the vacation does not

significantly affect the incidence or mortality rates. This lack of significance may be

due to the relatively small differences in vacation timing, with the earliest timing

being only 4 weeks before the latest timing.

A.8 Effects on Reporting

This subsection assesses how vacation periods impact the number of physicians

who submit reports. The original data from epidemiological stations specify how
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(a) Absolute Timing

The graph shows the results of the regression speci-
fied in Equation 23 with the outcome of cumulative
ILI incidence per 10,000 in a season. Points repre-
sent point estimates, and bands represent 95% con-
fidence intervals.

(b) Relative to Peak Timing

The graph shows the results of the regression speci-
fied in Equation 24 with the outcome of cumulative
ILI incidence per 10,000 in a season. Points repre-
sent point estimates, and bands represent 95% con-
fidence intervals.

Figure A.31: Effects of Vacation Timing on Cumulative Incidence of Infections

(a) Absolute Timing

The graph shows the results of the regression speci-
fied in Equation 23 with the outcome of cumulative
respiratory mortality per 10,000 in a season. Points
represent point estimates, and bands represent 95%
confidence intervals.

(b) Relative to Peak Timing

The graph shows the results of the regression speci-
fied in Equation 24 with the outcome of cumulative
respiratory mortality per 10,000 in a season. Points
represent point estimates, and bands represent 95%
confidence intervals.

Figure A.32: Effects of Vacation Timing on Cumulative Respiratory Mortality

many physicians submitted the reports. However, it is important to highlight that

physicians will only appear as submitting reports if they reported a positive number

of cases. If a physician was in the office but had zero cases to report, they will not

59



be represented in the data. This distinction is crucial, as any changes in the number

of reporting physicians may reflect either their presence or absence in the office, or

fluctuations in the number of patients presenting with infections.

First, I estimate the regression in equation 1 using the number of physicians who

submitted reports per 10,000 population as the outcome. The estimates are shown

in Figure A.33.

Figure A.33: Effect on Physicians who Submitted Reports
Note: Graph shows the impact of winter vacation on the weekly number of
doctors submitting the reports. The outcome is number of doctors who sub-
mitted the report per 10 000 population. Hence the coefficients (as in equation
1) show the change in number of reporting physicians in each week prior and
after the vacation, where week 0 is the first week of vacation. Shaded area
represents 95% confidence interval for the estimates. Errors are clustered at
the region level.

There is a clear decline in the number of physicians submitting reports both

during vacation and in the five weeks following. This decline mirrors the decrease in

incidence. There are two potential explanations for this decline. The first possibility

is that physicians are absent and do not submit reports during the vacation and up to

five weeks afterward. The second possibility is that there are fewer cases both during

and after the vacation, leading physicians to submit fewer reports because there are

fewer cases to report. Unfortunately, with the available data, it is impossible to

accurately distinguish between these two explanations. Nonetheless, the observed

pattern closely follows the decline in infections. While it is plausible that doctors

might be more likely to leave the office during vacation if they have school-aged

children, it is more difficult to argue why doctors would be absent specifically in the

weeks following the vacation.

To address the concern that a lower number of reports is due to fewer reporting

physicians, I also ran the regression in equation 1 replacing the outcome with the

number of reports divided by the number of physicians. If the decline in incidence is
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entirely due to fewer physicians reporting, the ratio of reports to physicians should

remain unaffected. Figure A.34 demonstrates the results. While the results are

noisier, there is a clear decline in the number of reports per physician, indicating

that even physicians who do report see fewer patients with influenza-like illnesses.

Figure A.34: Effect on Cases per Reporting Physician
Note: Graph shows the impact of winter vacation on the number of ILI reports per
reporting physician. Each sub-figure represents results of the estimation of the event
study in equation 1 on a sub sample restricted to age groups 0-4,5-14,15-64, 65+. The
outcome is the number of reports per reporting physician in a given week. Hence the
coefficients show the change in the above ratio in each week prior and after the vacation,
where week 0 is the first week of vacation. Shaded area represents 95% confidence interval
for the estimates. Errors are clustered at the region level.
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