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Abstract

This paper investigates how the opening of hotels and ski facilities in Poland impacted touristic
spending, mobility and Covid-19 outcomes. We use administrative data from a government program
subsidizing travel to show that the policy increased consumption of touristic services in ski resorts. Next,
leveraging geolocation data from Facebook, we show that ski resorts experienced a significant influx of
tourists, increasing the number of local users by up to 50%. Furthermore, we show that there was an
increase in the probability of meetings between pairs of users from distanced locations and pairs of users
from touristic and non-touristic areas. As the policy impacted travels and gatherings, we then analyze
its effect on the diffusion of Covid-19. We find a significant association between touristic movements
and the severity of a major pandemic wave in Poland. In particular, we observe that counties with ski
facilities experienced more infections after the opening. Moreover, counties strongly connected to the ski
resorts during the opening had more subsequent cases than weakly connected counties.
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1 Introduction

Regulating risky behaviors often requires balancing competing policy goals. Maximizing utility or income
through risky activity comes at the expense of the health of risk-takers and individuals not engaged in the
risky behavior. Such negative externalities present a particular challenge in designing an efficient policy, as
decision-makers often lack information on the magnitude of the social costs of risky behaviors.

The covid-19 pandemic offers a unique setting to investigate the trade-off between individual freedoms
and the negative externalities they generate (Stiglitz [2021], Stoddard et al. [2021]). This study opportunity
arises as authorities attempted to balance stimulating economic activity and preventing infections (Alvarez
et al. [2020], Acemoglu et al. [2021], Caulkins et al. [2021]).

The opening of tourism is a particularly useful case. Engaging in tourism has a large potential for negative
spillovers during a pandemic. Tourism creates long-distance movements of the population (Mangrum and
Niekamp [2020]), and, as such, can contribute to the spread of infectious diseases (Belik et al. [2011], Bajardi
et al. [2011], Findlater and Bogoch [2018]). Simultaneously, tourists generate significant income for local
economies. Hence, any decisions concerning tourist activity require balancing the trade-off between economic
and public health outcomes. Yet, there is currently no evidence quantifying the impact of touristic mobility
on the diffusion of infections. This paper aims to fill this gap by analyzing the effects of the reopening of
Polish tourism on tourist consumption, mobility, and the spread of Covid-19.

Our study design takes advantage of a unique policy that reopened all hotels and ski lifts in Poland. On
the 12th of February 2021, the Polish government reopened ski lifts and hotels at 50% capacity and with
food supplied through room service only. At the same time, authorities reopened only cinemas, theatres,
and operas at 50% capacity with mandatory masks1. The hotels and ski lifts remained open until the 20th
of March, when the second wave of infections ravaged the country.

This setting is particularly relevant as ski resorts play an important role in the local economies and in the
Polish tourism industry. While on the national scale only 2.2% of working Poles are employed in businesses

1Such entertainment facilities rarely operate in ski resorts
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related to hospitality or recreation (H&R), areas with ski resorts rely heavily on income from these sectors.
Almost 10% of all businesses active in towns with more than 3 ski lifts are related to H&R 2. These locations
are vital for the tourism industry. 9% of country’s H&R businesses were located in communes with some
ski facilities, which constitute only 3% of all communes. Moreover, these communes are home to 15.5% of
all hotel beds in the country. Hence, the policy of opening hotels and ski resorts had a potential to strongly
affect economic activities related to tourism.

We show that the policy indeed caused a significant increase in touristic spending and movements of
tourists. First, we rely on data on the usage of government travel subsidies to document a swift growth
in the consumption of touristic services in ski resorts after the opening. Second, using aggregated and
anonymized geolocation data from Facebook (FB) and an event study framework (similar to Dave et al.
[2021a]), we show that the policy’s implementation increased the number of FB users in ski resorts by 25%-
50%. Moreover, there has been a surge in the probability that users from non-touristic and touristic areas
meet and in the probability that users living far away meet.

While the number of travels and tourist gatherings increased due to the policy, its effect on Covid-19
outcomes is a priori not obvious. On the one hand, visitors could carry the disease from their homes to
touristic locations and back. On the other hand, they could only gather in their rooms or outdoors as
restaurants were closed. To learn more about the impact of the policy on Covid-19 cases, we leverage
granular infection data and the uncofoundedness approach from Callaway and Li [2021]. We use this newly
developed method because traditional fixed effect models perform poorly in the presence of non-linearities
inherent to patterns of Covid-19 diffusion (Gauthier [2021], Goodman-Bacon and Marcus [2020]). We find
that counties with ski resorts see additional cases already in the third week after the opening. Such an
early effect is absent in other counties. Moreover, counties strongly interacting with ski resorts during the
policy have a higher incidence of infections than counties with weak interactions. This is consistent with a
secondary spread from tourists bringing the virus back home.

The epidemic has sparked a large body of literature related to Covid-19, however relatively little research
has been dedicated to the effect of tourism on infections. Researchers have shown that industry closures
and stay-at-home orders have a limiting impact on both mobility and subsequent Covid-19 outcomes (Fang
et al. [2020], Gupta et al. [2020], Lyu and Wehby [2020], Beria and Lunkar [2021], Courtemanche et al.
[2020], Abouk and Heydari [2020], Badr et al. [2020], Lau et al. [2020], Morley et al. [2020], Xu et al. [2020],
Goolsbee and Syverson [2021]). Fewer papers analyzed reopening. An exception is Nguyen et al. [2020] who
found that lifting restrictions led to 6-8% increase in mobility.

Opening the tourism industry can lead to travels and large gatherings, and there has been some evidence
relating these phenomena to the viral spread. One of the seminal papers on this topic is Adda [2016],
which shows that school vacation and transportation strikes disrupt viral transmission. More recently,
Chernozhukov et al. [2021], Andersen et al. [2021], Courtemanche et al. [2021], Bravata et al. [2021] ,
Goldhaber et al. [2021] link school and colleges operating modality to the local prevalence of infections.
However, the opening of schools can have substantially different effects than tourism opening as children are
less likely to suffer severe consequences of Covid-19 (Castagnoli et al. [2020], Dong et al. [2020]).

Closer to our population of interest (adults) are studies analyzing sport, social, and political gatherings.
Large sporting events such as hockey, basketball and football game can lead to higher Covid-19 prevalence
(Carlin et al. [2021], Alexander et al. [2020], Breidenbach and Mitze [2021]). Similarly, smaller gathering
such as birthdays or bar meetings increase likelihood of subsequent infections (Harris [2020], Whaley et al.
[2021]). The evidence in the case of political gatherings is mixed. Palguta et al. [2021] find an increase in
the growth rate of Covid-19 in areas with elections, while Dave et al. [2020] conclude that a political rally
in Tulsa did not affect local Covid cases. They note, however, that the local population enhanced social
distancing, which could offset the effect of the gathering. This compensatory behavior is unlikely to have
taken place for tourism opening because local population populations will interact with incoming tourists
by providing them hospitality services. Economic and educational gatherings are also conducive to enhance
local diffusion of infections. Taylor et al. [2020] show that proximity to livestock plant is associated with

2According to the data from December 2019 from the National Register of Business Entities (REGON). On the national
level only 3% of businesses are in H&R.
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higher covid transmission and Rufrancos et al. [2021] provide evidence that Covid-19 cases tend to spill from
universities to surrounding neighborhoods.

Tourism can also encourage long-distance travel, and it has been shown that travelers contribute to the
diffusion of infections. Mangrum and Niekamp [2020] provide evidence that college students returning from
spring break trips accelerated the local spread of Covid-19 and the related mortality. Burlig et al. [2021]
analyzes how the length of the travel ban matters for subsequent Covid-19 outcomes and shows an empirical
association between migrants traveling home and the following number of cases in their home area. Finally,
people attending large events with little protective behavior such as Capitol Riot (Dave et al. [2021b]) or
Sturgis Motorcylce Rally (Dave et al. [2021a]) bring the disease when traveling back to their home counties.

As the literature shows, long-distance travel, and large gatherings are associated with the diffusion of
Covid-19. As the opening of tourism can encourage both travels and gatherings, it is potentially highly
relevant for the viral spread.

Our main contribution is the use of a unique quasi-experiment to identify the causal effect of tourism
on mobility and infections. In particular, we leverage an interaction of two complementary policies which
produced a large shock to touristic movement: (1) a limited-time policy that allowed opening of hotels
and ski facilities in Poland during the Covid-19 pandemic and (2) the availability of travel subsidies. In
addition, our study relies on novel geolocation data from Facebook, which permit us to measure mobility at
a very granular scale in time and space. Furthermore, we contribute by providing quantitative answers to
policymakers who seek to understand the health and economic consequences of tourism opening. We first
show that opening ski resorts and hotels increased touristic spending and contributed to long-distance travel
and gatherings. Secondly, we provide evidence that reopening tourism accelerated the spread of Covid-19.
Finally, we show that the costs of the policy exceeded the benefits.

In the remainder of the paper, we first explain what data we use throughout the paper. The following
section (3) discusses empirical methods and results regarding impact of the policy on mobility. Analogously,
section 4 examines the effect of the policy on Covid-19 outcomes. The conclusion closes the paper.

2 Data

We compile a unique dataset featuring mobility patterns of Facebook users, usage of government travel
subsidies, and administrative data on Covid-19 related outcomes from the Polish Ministry of Health.

2.1 Mobility

The data on mobility comes from Facebook’s project Data for Good Initiative3. Since the start of the
pandemic, it has been used for various studies mapping human mobility in countries such as the UK (Shepherd
et al. [2021]), the USA (Kissler et al. [2020]), or Italy (Shtele et al. [2022], Pieroni et al. [2021], Spelta and
Pagnottoni [2021], Beria and Lunkar [2021]). Data originates from Facebook users who enabled the location
services on their devices. Note that manual location tagging is not required from the user. The location
is captured when the Facebook or any other app using GPS is active. Users’ trajectories are aggregated
and anonymized to show patterns of spatial movements. We use two measures of mobility: population
and collocation probabilities. Basic information on the construction of these measures is presented below,
while more detailed and technical discussion has been relegated to the appendix. The reliability of the
data naturally depends on the Facebook penetration of the social media market and geolocation usage.
In case of Poland, Facebook is the most popular social media platform exceeding by far the competition
(Hootsuite [2022], Statcounter [2022]). In early 2021, around 78% of the traffic generated by social media
to other websites in Poland was from Facebook, followed by Pinterest with only 7% (Statcounter [2022]). In
our data, we see about 1 900 000 users with the geolocation services turned on (around 5% of the Polish

3Data provided by the Facebook’s Data for Good Initiative: https://dataforgood.fb.com/. We thank Alex Pompe for his
help with the data
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population). This number is relatively stable throughout the study period 4. This is incomparably larger
than most traditional datasets providing insights into mobility such as surveys or flight traffic data.

Nonetheless, the representativeness of such data is debatable, as specific demographics may be more
likely to use social media or geolocation services. Sloan and Morgan [2015] show that Twitter users who
enable geolocation have different characteristics than users who do not. Facebook users may better represent
the underlying population as Gibbs et al. [2021] show that their number correlates strongly with the local
census estimates in the UK. Moreover, they find no specific relationship between age, ethnicity, or poverty
and Facebook usage. In the case of Poland, we see an uneven distribution in the share of the population
feeding FB colocation data. As shown on the map 15b in the appendix, FB has higher penetration in
western counties, which tend to be more prosperous. Overall the predictors of FB usage seem orthogonal to
the location of ski resorts, and we do not expect it to change in a short time around the policy. Moreover,
colocation is defined as a share of possible interactions among available users, so the measure is robust to
changes in the number of users.

It needs to be acknowledged, however, that our estimates of mobility are specific to the population using
Facebook in Poland. Unfortunately, FB does not share the demographic structure of its base. However, in
the appendix section 7 we identify economic and demographic correlates of the consistent FB geolocation
usage. Counties with high usage of geolocation tend to me more female and younger and urban, although
the differences are small. It is also reassuring that FB mobility data has been shown to correlate well with
other mobility sources such as geolocation from mobile operator O2 (Jeffrey et al. [2020]) or Google mobility
measures (Pérez-Arnal et al. [2021]). On the other hand, Desiderio et al. [2022] use open source data (for
instance train and flight traffic) to argue that FB may underestimate long-distance movements. Such bias
would make estimated effects on long-distance travel conservative.

Overall, we are confident that Facebook’s data provide unique and reliable insights into mobility. Below
we discuss two measures used throughout the study.

Population The population at time window t and tile A is defined as the number of users who were logging
mostly from the tile A during the time window t. There are three time windows per 24 hours (with breaks
at 00:00, 08:00, and 16:00 UTC) and tiles are approximately 3km x 3km. Observations with less than ten
users are omitted for privacy reasons. We assign tiles to counties based on their centroids. As an example,
consider the map on the figure 1a. It represents the population logging on the tiles covering the Tatrzanski
county - a popular tourist destination - on the afternoon (17:00 - 01:00 ETC) of the 14th of February 2021.
The red dots and navy dots indicate the location of hotels and ski facilities, respectively. We use hotels and
ski facilities’ locations 5 to classify tiles as touristic or non-touristic. Figure 1b shows the time series of the
number of users in Tatrzanski county. There is a clear uptick in the FB population after hotels’ opening.
See appendix for technical details, appendix table 1a and figure 13a for summary statistics of the population
data.

4See figure 14 and the discussion on the spatial-temporal trends in FB usage in the appendix
5We use the name ”hotel” for any accommodation facility. We find hotels and ski facilities’ coordinates from the Open-

StreetMaps project (OpenStreetMap contributors [2017]). The location of ski facilities were scraped from www.narty.pl and
validated through own search
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Figure 1: FB Population data

(a) Hotels and population in Tatrzanski county on
the afternoon of the 14th February 2021

Note: The color of a tile represents the population, i.e.,
the number of users logging from the tile. Grey tiles
correspond to no records. Red dots represent coordinates
of hotels, and navy dots represent coordinates of skiing
facilities. Source: OpenStreetMap and own elaboration
based on Facebook data

(b) Number of FB users logging in between 17:00 and
01:00 in Tatrzanski county

Note: The count of users in Tatrzanski county represents
the sum of users from tiles with centroids in the county.
Users logging in multiple tiles during the 8-hour window
are assigned to the modal tile. Source: Own elaboration
based on Facebook data

Colocation Colocation data aims to approximate how often users from different regions meet. Technically,
it measures the probability that two randomly chosen users from county6 i and j were within the same
location, i.e., the same 0.6km × 0.6km tile 7 at a randomly chosen 5-minute interval of a given week
(Wednesday to Tuesday) 8. We do not consider collocation between users from the same county. Note that
the colocation probabilities are small in magnitude because the denominator is the number of possible pairs
of users from the two counties multiplied by the number of 5 minutes intervals in a week. The user’s county
of residence is derived from a consistent history of night-time locations. The map in figure 2 illustrates the
collocation probabilities of users from Warsaw with users from other counties in the week ending on the
16th of February 2021. The size of a dot and the transparency of a link is proportional to the collocation
probability between Warsaw and the given county. See appendix for technical details, appendix table 1b and
figure 13b for summary statistics of the colocation data.

6County (Powiat) is an administrative unit larger than a commune. There are 380 counties in Poland
7Smaller tiles than in the case of population data
8Formally, and ignoring the week index, let Xtir be the number of users from region r at tile t in the 5 minute time interval

i. Then let mrs to be the sum of meetings between pairs of individuals from region r and s across all tiles and time intervals,
that is mrs =

∑
ti XtirXtis. The colocation probability is then the ratio of all actual meetings and all potential meetings, that

is: Pr(Colocationrs) = mrs
2016nrns

, where nr is the number of users from region r and 2016 is the number of all five-minute

intervals in a week. See Iyer et al. [2020] for more details
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Figure 2: Colocation of users from Warsaw and other counties in the week ending on the 16th of February
2021

Note: Size of red dots and transparency of curved links are proportional to the colocation
probabilities between users fromWarsaw and given county Source: Own elaboration based
on Facebook data

2.2 Spending on tourism

We approximate the spending on tourism by the usage of the funds from a governmental program sub-
sidizing travel. The ”Touristic Voucher” program (Bon Turystyczny) was initiated in 2020 to revive the
tourism industry. Each family is entitled to one voucher per child under 18 years old. The value of the
voucher is approximately $130 9 which can be spent on anything related to tourism, such as transportation,
accommodation, or organized activities. This is a non-negligible amount given that Poles spent on average
$122 per trip in the first quarter of 2021 10, although skiing usually requires higher spending. The data
provided by the government specifies the amounts paid to businesses with vouchers. In particular, it shows
total payments received by businesses in each week and each commune. Commune (gmina) is the lowest
administrative unit in Poland, and they usually correspond to a town or a couple of villages. There are
2477 communes with a median population of 7486. The commune of the business is the commune where
the headquarter is located. Data shows that the program was particularly beneficial for ski resorts. In the

9The value of the voucher doubles for children with disabilities
10Information obtained from the Polish Ministry of Sport and Tourism through the FOIA request
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study period of January to April 2021, 26% of all payments made with vouchers (around $5.5 millions) were
directed to businesses located in 89 communes with ski facilities.

2.3 Health outcomes

The Polish Ministry of Health provided the data on health outcomes. It contains weekly observations at the
commune level for the number of Covid-19 cases, deaths, tests taken, and people vaccinated with two doses.
Our data covers May 2020-April 2021 for cases and tests, while remaining variables are available for the
period January 2021-April 2021. During this period, Poland experienced its second major wave of infections.
Figure 3 visualizes the the evolution of the pandemic in Poland by showing the median, 10th, 25th, 75th and
90th quantiles of weekly cases per 10 000 inhabitants across the communes. As one can see, the number of
new infections varied considerably in the temporal and cross-sectional dimensions. Interestingly, the timing
of the second wave coincided with the opening of hotels.

Figure 3: Quantiles of weekly cases per 10 000 inhabitants in Poland

Note: The lighter shaded area corresponds to the 10th and 90th quantiles. The darker
area corresponds to the 25th and 75th quantiles. The red line and points represent the
median. Source: Own elaboration based on the data from the Ministry of Health

3 Mobility and spending outcomes

This section shows that the opening of hotels raised touristic spending in ski resorts and significantly increased
mobility, especially at long distances. A sharp influx to touristic areas raised the frequency of meetings
between inhabitants of touristic and non-touristic counties.

3.1 Empirical framework: the impact of the policy on touristic spending

We first investigate whether people responded to the policy by increasing their consumption of touristic
services in the areas with ski resorts. We conduct an event study comparing spending from the ”Touristic
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Voucher” program in touristic vs. non-touristic areas. In particular, we divide all communes by the number
of hotel beds per 100 inhabitants and the presence of ski facilities 11. This results in a set containing three
categories aiming to approximate touristic appeal: communes with fewer than four hotel beds per 100 (non-
touristic), communes with more than four hotel beds but no ski resort (touristic), and communes with more
than four hotel beds a ski resort (very touristic). We chose the number four as it roughly corresponds to
the 90th percentile of the distribution of hotel beds per 100 inhabitants. Note that hotels and ski facilities
could not operate before February 12th, so the spending trends should be parallel across categories. Then
we estimate the following regression:

Spendingkw =
∑
c ∈ C

∑
W ∈ {{01/03 : 01/31},

{02/14 : 05/02}}

Tourismk
c I(w = W )βW

c + λk + γw + ϵkw
(1)

The event study in equation 1 analyzes the change in payments from the ”Touristic Voucher” program in
communes of category c ∈ C 12 in week w compared to an analogous change in communes with fewer than
4 hotel beds per 100. The baseline period is the week ending on February 7th, which is excluded from time
dummies. The outcome variable is the total value (in USD) of the vouchers spent in businesses located in
commune k in week w. The dummy Tourismk

c takes value 1 if the commune k belongs to the category c.
The parameter of interest is βW

c which measures the impact of the policy on spending in areas of type c in
week W compared to non-touristic areas. We expect the coefficients to be 0 before the policy and higher in
areas with ski resorts after the policy as these are more appealing during winter. We allow for the commune
λl and week γw fixed effects. We cluster the standard errors at the commune level.

3.2 Hotels opening led to higher consumption of touristic services in ski resorts

The opening of the tourism industry increased touristic spending, especially in the ski resort areas. Figure
4 displays βW

c coefficients. Note βW
c is 0 before the policy date (dashed line), confirming that trends were

parallel before the reopening. However, after February 12th, we see a dramatic rise in the payments received
in communes with ski facilities (right panel). The increase is smaller in touristic communes without ski
resorts (right panel). The effect of the policy in ski resorts peaks in the second week and reverts to 0
as hotels close again at the end of March. Overall, the interaction of subsidies and opening of the hotels
increased touristic consumption in ski resorts.

11Data on hotel beds come from the Polish Statistical Agency for the year 2019. Data for ski facilities come from scraping
the database of the website narty.pl. See figure 17 in the appendix for the spatial distribution of ski resorts

12Where C contains the two non-exluded categories C = {communes with more than 4 hotel beds but no ski resort,
communes with more than 4 hotel beds and a ski resort}
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Figure 4: Event study: Hotels and ski resorts reopening and touristic spending

Note: Lines and points correspond to the estimates of βW
c from equation 1. The excluded

category is Communes with fewer than 4 hotel beds per 100 inhabitants, and the excluded
date is the 7th of February. The panel on the left represents the estimates for touristic
communes without ski-resorts, the panel on the right shows estimates for the touristic
communes with ski-resorts. Red shaded area plots 95% confidence bands, which allows
for clustering at the commune level. The green rectangle represents the time when the
hotels and ski resorts were open. Source: Own elaboration based on administrative data

Some caution, however, is required in interpreting this result. Firstly, estimates present the lower bound
on total spending as they account only for the payments with the vouchers. While we cannot track the
expenditures from other sources, the aggregate national spending on travel in the first quarter of 2021 was
50 times higher than the amount from the vouchers only 13. Hence, the opening likely incentivized spending
also among people not using the subsidy. Nonetheless, other groups may experience different treatment
effects as they differ from the voucher holders on dimensions such as age, income, or frequency of skiing, and
their travels are not subsidized.

Secondly, it’s worth considering if the results are robust to weather variations related to climate change.
For example, warming temperatures may decrease the snow coverage and make skiing less appealing. Nev-
ertheless, skiing resorts are popular tourist destinations throughout the year, and larger ski lifts serve hikers
in the warmer months . Hence, we believe that climate variation would not fundamentally alter our results.

Thirdly, our findings do not allow us to assess what would be the impact of tourism on spending in
the pre-Covid-19 period. On the one hand, domestic expenditures could be lower due to the lack of travel
subsidies and the ease of border crossing before the pandemic. On the other hand, they could be higher as
potential tourists did not experience adverse income shocks or did not face a risk of infection. Therefore,
the pre-Covid treatment effect could vary in either direction.

While the interaction of vouchers and hotels opening makes it difficult to generalize the effect on spending,
it also provides a unique setting to investigate the impact of tourism on infections. As both policies are
complementary, they are likely to produce a substantial shock in the touristic movement that we can leverage
to investigate its effect on public health.

3.3 Empirical framework: the impact of the policy on population movements

Informed by the increase in touristic spending, we may expect a large movement of tourists after the policy. A
spike in the national railway and the passanger cars’ traffic provides suggestive evidence for such movements
(see figure 12b in the appendix). To investigate this formally, we use differential tourist accommodation
capacity and proximity to ski resorts to conduct an event study evaluating whether the reopening of hotels
increased the inflows to touristic locations. In particular, we analyze whether the number of users on

13The aggregate spending from vouchers in Q1 2021 was $17,359,888, while aggregate national spending on travels in the
same period was $877,385,506 according to the Ministry of Tourism
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tiles with many hotels increased more after the policy’s implementation compared to tiles with no hotels.
Furthermore, we stratify the analysis by whether the tiles are close to ski facilities. We hypothesize that the
policy induced a large influx of tourists into ski resorts, noting that places with many hotels attract more
tourists due to their grater capacity. Moreover, stratifying the analysis by the proximity to ski resorts partly
alleviates the concern that the number of hotels proxies high urbanization as ski resorts are usually located
within small towns.

To implement this strategy, we locate any accommodation and ski facilities and assign them to tiles. We
then calculate the number of hotels in each tile. We bin tiles into five categories: 0 hotels, 1 hotel, 2 to 9
hotels, 10-19 hotels, and 20 or more hotels. Next, we define tiles as in proximity to a ski resort if they are
within 25km of the closet ski lift in the mountains. Then we estimate the following regression separately for
the tiles in proximity and not in proximity to ski resorts:

log(population)jtp =
∑

h ∈ {{1}, {2 : 9}
{10 : 19}, {20+}}

∑
T ∈ {{01/06 : 02/03},

{02/05 : 03/31}}

HotelsjhI(t = T )βT
h + λjp +

∑
dw∈DW

αdw
i(j) + γtp + ϵjtp

(2)

The event study in equation 2 analyzes the change in the population on tiles with h hotels at date t
compared to an analogous change in tiles with 0 hotels. The baseline period is the 4th of February, which
is excluded from time dummies. The outcome variable is the natural logarithm of the population at tile
j, date t, and time window p. The dummy Hotelsjh takes value 1 if the tile j has a number of hotels in
the bin h. The parameter of interest is βT

h , and we expect it to be 0 before the policy (12th of February),
and positive after the policy. Moreover, βT

h should increase with the number of hotels. The increase should
be considerably larger in proximity to ski resorts if the movements are tourism-related. We allow for the
tile×time-window fixed effects λjp, weekday×county fixed effects αdw

i(j), and date×time-window fixed effects
γtp. We cluster the standard errors at the county level.

3.4 Hotels opening led to increase in mobility in touristic areas

The reopening of hotels increased the population present at ski resorts considerably. Figure 5 displays βT
h

coefficients. We see that βT
h is 0 before the policy date (dashed line), confirming that trends were parallel

before the reopening in all types of tiles. However, after the 12th of February, we see high growth in the
number of users present in tiles with hotels, especially in the proximity to ski resorts (left panel). The growth
is also higher for tiles with more hotels. For tiles with more than 20 hotels and in proximity to ski resorts,
we see about a 50% increase in the population during weekends and a 30% increase during weekdays. The
effects subside with time as Poland enters its second wave of the pandemic. While there is a significant
increase in population at tiles with many hotels and not in proximity to ski resorts (right bottom panel), its
magnitude is small. We conclude that there was a large influx of tourists to ski resorts after the opening.
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Figure 5: Event study: Hotels and ski resorts reopening and Facebook users

Note: Lines and points correspond to the estimates of βT
h from equation 2. The excluded category is tiles with 0 hotels, and

the excluded date is the 4th of February. The panel on the left represents the estimates for tiles in the proximity to ski resorts,
the panel on the right shows estimates for the remainder of the tiles. Estimates of βT

h for each bin h are plotted separately,
starting with the lowest bin h at the top and the highest bin h at the bottom. Blue points correspond to weekends and yellow
to weekdays. Red shaded area plots 95% confidence bands, which allows for clustering at the county level. The green rectangle
represents the time when the hotels and ski resorts were open. Source: Own elaboration based on Facebook data

3.5 Empirical framework: the impact of the policy on the frequency of meetings

In this section, we investigate whether the policy affected the frequency of meetings between users from
different counties. Such meetings are essential from an epidemiological perspective because they can trans-
form local outbreaks into a national wave. Our hypothesis is that the reopening policy made popula-
tion flows at long distances and flows from non-touristic to touristic counties more likely. To test this,
we perform two analyses. The first analysis investigates whether the frequency of long-distance meet-
ings increased relative to short-distance meetings after the policy was enacted. We classify each link
into five distance bins based on the distance between centroids of the counties. The bins are d ∈ D =
0− 100km, 100− 200km, 200− 300km, 300− 400km, 400 + km. Next, we regress the log of colocation prob-
abilities on the interaction of the week dummies with the distance bins:

log(P (collocation))klw =
∑

W ∈ {{01/05 : 02/02},
{02/16 : 04/13}}

∑
d∈D

DistancedklI(w = W )βW
d

+ ϕkl + χw + vklw

(3)

Where log(P (collocation))klw is the log of the probability of collocation between users from county k and
l in the week w. A dummy Distancedkl is equal to 1 if the distance between counties l and k is in the bin d.
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The bin with the shortest distance is excluded as a reference. The dummy I(w = W ) is equal to one if the
week of the observation corresponds to the week W . The excluded week is the last week before the opening,
that is, the week of 02/09. We allow for link ϕkl and week fixed effects χw, and we cluster the standard
errors at the link level. The parameter of interest is βW

d which is a difference-in-differences estimator: the
first difference measures the percentage change in the collocation probabilities for counties at a distance d in
the week w compared to the week of 02/09. The second difference takes this change and compares it to an
analogous change for counties at a distance within 0-100km. We expect βW

d to be positive for weeks when
the policy was in place as people started to travel long distances.

The second analysis tests the hypothesis that meetings between non-touristic and touristic counties
increased after the policy was implemented. We rely on the assumption that counties with large skiing
and accommodation capacities have greater touristic appeal (see the derivations of the theoretical impact of
policy on colocation in the appendix). Hence, we define the exposure to tourists by using the total length
of skiing trails and the number of hotel beds in the county14. In particular, we first classified counties as
below (few hotels) or above (many hotels), the third quartile of the distribution of hotel beds. Second, we
classify counties with 0 skiing trails as 0 trials. Finally, for counties with some skiing trails, we divide them
by whether they are below (few trails) or above ((many trails) the third quartile of the distribution of the
total length of skiing trails 15. In this way, we obtain five possible exposure statuses es ∈ ES={0 trails &
few hotels beds, 0 trails & many hotel beds, Few trails & few hotel beds Few trails & many hotel beds, Many
trails & Many hotel beds} 16. See figure 18 for the spatial distribution of the exposures.

We expect the probability of collocation between inhabitants of touristic and non-touristic regions to have
increased after the policy’s implementation. The most substantial effect should exist for pair of counties with
and without ski resorts. To measure such effect, we conduct our analysis on the link level (links between
counties) by running the following regression:

log(P (collocation))klw =
∑

W ∈ {{01/05 : 02/02},
{02/16 : 04/13}}

∑
s∈ES

∑
q∈ES

Exposuresk × Exposureql I(w = W )βW
sq

+ δkl + γw + ϵklw

(4)

A dummy Exposuresk is equal to 1 if the county k belongs to the exposure category s and 0 otherwise.
The excluded combination of classes is the one between counties which both belong to 0 trails & few hotels
beds. Analogously to equation 3, we exclude the week of 02/09, and we allow for link δkl and week fixed
effects γw, and we cluster the standard errors at the link level. The parameter of interest βW

qs estimates
the percentage change in the collocation probabilities between users from counties of types s and q in the
week w compared to the week of 02/09 and relative to an analogous change for users from two different
counties both belonging to the type 0 trails & few hotels beds. Note that the links are undirected, hence we
use βW

qs independently of which county is in q and which in s. We expect βW
qs to be positive after policy

implementation for pairs s and q such that one has ski trails and hotels while the other does not. Moreover,
the effect should grow in the difference between the counties touristic appeals and hence should see the most
prominent effect for pair 0 trails & few hotels beds and Many trails & Many hotel beds.

3.6 Policy increased likelihood of long distance meetings and meetings between
locals and tourists

The frequency of long-distance meetings and meetings between non-touristic and touristic counties increased
after the opening. Figure 6 shows the parameter of interest from the equation 3. We see a clear increase in
colocations at long distances compared to counties within 100km after the policy was enacted. Moreover,

14Data from the Polish Statistical Agency for the year 2019
15Among counties with any skiing trails
16All counties with long skiing trails have many hotels beds, hence exposure Few hotel beds & Many trails is missing
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the increase was greater for distances above 200km, which is consistent with tourists going further as they
can stay for the night in a hotel. The parameter of interest decreases after the initial surge, which may be
related to the rising number of Covid cases in late March. Furthermore, we see a spike in the first week of
April, which likely corresponds to Easter festivities.

Figure 6: Event study: Hotels and ski resorts reopening and long-distance colocation

Note: Lines and points correspond to the estimates of βW
d from equation 3. The excluded category is Distance < 100km and

the excluded week is 02/09. Each panel represents estimates of βW
d for a different distance bin b starting with the lowest

distance on the left. Red shaded area plots 95% confidence bands, which allows for clustering at the link level. The green
rectangle represents the time when the hotels and ski resorts were open. Additionally, an annotation is added to mark the
week of Easter. Source: Own elaboration based on Facebook data

Turning our attention to equation 4, figure 7 shows an increase in colocation between tourists and locals.
Each panel in figure 7 corresponds to estimates of parameters βW

qs for different s and q. The row label
represents category s, and the column label represents category q. For example, the top-left panel represents
the change in the colocation probabilities between counties with 0 trails & few hotels beds and with 0 trails
& many hotels beds. As expected, we do not see significant changes in the frequency of meetings between
pairs of counties that are either both non-touristic (that is, have 0 or few trails) or both touristic. While
the null effect among non-touristic counties is accurately estimated, we obtain noisy estimates for links
between counties that both have trails. This is due to a lower number of touristic counties and, hence, fewer
connections among them. Importantly, we see a significant increase in the probability of meetings between
counties with 0 trials and counties with many trials immediately after the opening. The magnitude of this
increase is around 50% in the week following the the opening and stays positive for three weeks.
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Figure 7: Event study: Hotels and ski resorts reopening and touristic colocation

Note: Lines and points correspond to the estimates of βW
sk from equation 4. The excluded category is one with both counties

belonging to 0 trails & few hotels beds and the excluded week is 02/09. Each panel represents estimates of βW
sk for a different

pair of s and k types. Note that the ordering of types does not matter because links are symmetric. The types are described
in the strips on the left and on the bottom. For example, the bottom left panel represents βW

sk where one county belongs to
0 trails & few hotels beds and the other to many trails & many hotels beds. Red shaded area plots 95% confidence bands,
which allows for clustering at the link level. The green rectangle represents the time when the hotels and ski resorts were
open. Additionally, we add an annotation to mark the week of easter. Source: Own elaboration based on Facebook data

We conclude that the policy increased the frequency of long-distance meetings and that of meetings
related to tourism. As such, it could have a significant impact on Covid-19 outcomes.

4 Covid-19 outcomes

4.1 Conceptual framework

As the policy encourages gatherings and travel, it should impact the number of infections by increasing
the number of contacts between individuals. However, towns (communes) should be affected deferentially
depending on their participation in the tourism industry. We exploit this exposure heterogeneity when
designing our identification strategy.

Conceptually, we can distinguish between three levels of the exposure to the policy. First, communes
hosting ski facilities (type 1) are highly exposed. They experience a large influx of tourists as well as an
increase in local interactions due to amplified economic activity. We may expect new cases arising among
locals who come in contact with a higher number of individuals. Second, communes sending tourists to ski
resorts (type 2) are also directly affected by the policy. Tourists come into contact with both locals and
other tourists while staying at the resorts, and consequently they are at a higher risk of getting infected.
Third, there are communes that did not send tourists to ski resorts after hotels opened (type 3). They are
the least exposed to the policy as their contact patterns have not changed.

While the contact patterns at type 3 communes have not been affected, these communes can still expe-
rience treatment effect in terms of new infections. Policy-induced cases in communes of type 1 and 2 can
produce secondary infections which spread through the existing networks (Chang et al. [2021],Kuchler et al.
[2022],Fritz and Kauermann [2021]). They can flow to communes not sending tourists to ski resorts through
the connections pre-existing the policy. Note that these additional secondary cases would not have happened
in the absence of the policy and hence they are part of the treatment effect.
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Although every commune can be potentially affected by the policy, we may expect that the timing of
the treatment effect differs by type (Shtele et al. [2022], Thomas et al. [2020]). In particular, policy induced
infections should first appear in communes hosting ski resorts or directly sending tourists, and only later in
communes not sending tourists.

Motivated by this reasoning, our identification strategy leverages differential exposure to the policy by
type of the commune and time after the opening. In particular, it relies on comparing the dynamic of
infections in communes directly exposed to the policy (type 1 and type 2) to the analogous dynamic in the
communes not sending tourists to ski resorts.

4.2 Empirical framework

Translating this conceptual framework to the empirical framework poses three main challenges. First, we
need to identify communes sending tourists. Second, we need to adjust for differences in the pre-policy
pandemic outcomes across communes. Third, we need to find a valid counterfactual in the realm of a
nation-wide policy.

4.2.1 Tourists origin communes

We use colocation data to identify communes sending tourists to ski resorts. In particular, we sum all
meetings between individuals from county i and any county containing ski resort 17 during the first three
weeks of the policy. Mathematically, the strength of connections, which we call exposure is:

exposurei =

∑
w∈{w∗,w∗+1,w∗+2}

∑
j∈ski resort Meetingsijw

Ni

where Ni is the number of FB users in county i and ski resort is the set of counties with ski resorts. Note
that the connection measure is at a lower geographic granularity (county) than the outcome (commune).
Hence, we assume that all communes in a county have the same exposure. We divide communes into 5
categories which correspond to types. Communes with ski resorts are classified as Ski resort commune.
Communes without ski facilities but in the counties with ski resorts are classified as Ski resort county 18.
The rest of the communes are classified according to the tertiles of the exposure of their county (similarly to
Dave et al. [2021b]). We assume that the counties in the first tertile did not send any tourists because they
had fewest interactions with inhabitants of ski resorts during the policy. We further assume that counties
in the third tertile sent more tourists than counties in the second tertile. The map on figure 8 shows the
spatial distribution of the treatments 19.

17We exclude ski facilities not located in the mountains
18This distinction is necessary because we do not know connections within the county
19Note that the connections are at the county levels, but the outcomes are at the commune level. Hence, communes in the

same counties will have the same exposure

15



Figure 8: Exposure to ski resorts

Note: Each color corresponds to a different exposure category. Communes within the same county belong to the same
exposure unless the county contains a ski resort. Communes containing ski facilities are in the category Ski resort commune
and communes without ski facilities but in counties containing ski resort communes are in the category Ski resort county.
Source: Own elaboration

For the preliminary empirical evidence on the impact of the policy, we compare new cases in communes
with different treatments. Figure 9a plots the average number of new cases per 10 000 inhabitants in
communes by their exposure to the policy. Firstly, one notes that the pre-policy infection trends differ
between the treatment arms. Secondly, we do not see a significant difference in the number of new infections
right after the enacted policy (first dotted line). However, such a simple comparison may be insufficient to
uncover the impact of the policy. The diffusion is affected not only by the number of contacts but also by
the number of previous infections and susceptible individuals. Different treatments seem indeed to be at a
different stage of the pandemic before the policy, as evidenced in figure 9a. This by itself is enough to render
a simple comparison unreliable.

4.2.2 Balancing communes by pre-policy outcomes

To analyze the policy, we need to compare locations at a similar pandemic stage before the policy. As SIRD
has markovian properties, the current pandemic situation should depend only on the indices in the previous
period. The variables representing number of infections, share of susceptibles and number of infections
among connected units in the current period act as sufficient statistics for the outcome in the next period.
Consequently, the communes with similar pre-pandemic outcomes and characteristics should evolve in the
same way in the absence of the policy. Hence, our analysis conditions on a set of pre-policy variables
Fk,w∗−1 = {Xk,w∗−1, Zk}. In particular, Xk,w∗−1 represents pandemic outcomes in the last period before
the policy. It includes the number of cases, deaths, and tests per 10 000, their growth rates, and their

16



cumulative numbers since the beginning of the pandemic to proxy for share susceptible20. It also contains
the weighted sum of cases among neighbors where the weights correspond to the number of commuters
per capita. Moreover, Xk,w∗−1 includes the squares and interactions of all these variables. The controls
Zk represent observed location-specific characteristics which may influence the diffusion. In particular, Zk

includes population, population density, the type of the commune (urban or rural), unemployment rate at
the end of 2020, the number of sport objects per capita (swimming pools, stadia, courts), and the number
of theatres and cinemas per capita. The remaining analysis relies on the assumption that in the absence of
the policy and conditional on these variables, the potential outcomes would evolve in the same way across
all the types:

Assumption 1 -Ignorability : Y (0)k,w≥w∗ ⊥⊥ Treatmenttpk |Xk,w∗−1, Zk

for tp ∈ {ski resort, sending tourists,not sending tourists}

Figure 9b plots the average number of new cases by type in the sample matched on the conditioning
variables. We notice a considerable improvement in the similarity of the pre-policy outcomes, suggesting
that the matching was successful. However, the outcomes diverge in the weeks after the opening. In
particular, the number of cases is higher in the first weeks after the opening in locations with ski resorts and
communes strongly connected to ski resorts.

Figure 9: Covid cases in ski resorts

(a) Covid cases: full sample

Note: The averages were calculated on the full sample.
Dotted lines represent the opening and closure of hotels.
The date corresponds to the last day of the week. Source:
Own elaboration based on the Ministry of Health Data

(b) Covid cases: matched sample

Note: The averages were calculated on the matched sam-
ple. Each treated unit was matched with one unit from
the first tertile of connection. Units were matched by the
distance in the propensity scores computed based on the
conditioning variables. Dotted lines represent the open-
ing and closure of hotels. The date correspond to the last
day of the week. Source: Own elaboration based on the
Ministry of Health Data

4.2.3 Identifying control communes

The policy is nationwide, however the exposure to the policy differed between the communes. We argue that
the least exposed communes can act as controls to identify the on impact effect of the policy. Since the level
of interactions did not change in communes not sending tourists, their infection dynamic was not affected at
the onset of hotels opening. Consequently, they can serve as controls in the initial period of the new policy.
Hence, we are able to identify on impact treatment effect in communes with ski resorts and analogously in
communes sending tourists. The identification is more challenging in future periods. As the time passes,
infections induced by the policy flow through the existing network of connections. Due to these spillovers,
the treatment effect is no longer null in communes not sending tourists in later periods. In particular, they

20Since the beginning of 2021 in case of deaths, as the number of deaths is only available for 2021
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are affected by higher level of infections in communes that they are connected to. Hence the comparison
is biased in later periods and the bias is larger if communes are well connected and hence experience large
spillovers. However, the treatment effect in communes not sending tourists is presumably non-negative as
the policy should increase number of new cases. Hence, we can identify lower bounds on the treatment effect
in the remaining communes.

4.2.4 Estimation

To estimate the effects, we turn to the unconfoundedness approach suggested by Callaway and Li [2021]. It
has been shown that fixed effects estimation is unlikely to produce reliable results if outcomes are generated
by a non-linear model (Gauthier [2021], Callaway and Li [2021]), and the infections are likely a product
of such non-linear model21 (Keeling and Eames [2005], Brauer [2017], Caccavo [2020]). This issue occurs
because the treated units can be at a different pandemic stage than the control units. For example, suppose
that the treated units experienced their first case earlier than the control units. Then, their outcomes will not
evolve in parallel to the outcomes in the control areas, even in the absence of any policy. Figure 10 illustrates
this problem. It plots results of a simple simulation of the Susceptible-Infected-Recovered-Deceased model
in two areas which are identical except for the timing of their first case. The area represented with the red
curve started the pandemic earlier. Dotted lines show linear trends in the number of cases between two
points in time. Despite identical parameters, the trends are not parallel because these areas are at different
pandemic stages. Hence, differencing trends would introduce a bias rather than remove it.

Figure 10: Non linearities implied by SIRD model

Note: figure plots the results of a simulation of SIRD model in two areas. The parameters
are identical in both cases, however the timing of the first case is different. The area
represented by red curve had the first case earlier than the area represented by the blue
curve. Dotted lines measure linear trends in cases between two points in time. Despite
identical parameters, areas experience non-parallel trends

The unconfoundedness approach alleviates the above issue in two ways. Firstly, it does not rely on fixed
effects. Secondly, it ensures that the control units are at a similar pandemic stage before the policy. This
is achieved by conditioning on the pre-treatment covariates related to the pandemic. Thus, this approach
is compatible with a case in which pandemic-related parameters vary over time and with commune-specific
characteristics. It is, however, not compatible with a general unobserved heterogeneity in parameters by

21We perform traditional event studies on the full (figure 16a) and matched samples (figure 16b), see the results in the
appendix
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location. Hence, the estimation presented below is valid under the assumption that the parameters change
across locations only due to the variation in the conditioning controls Fk,w∗−1.

Intuitively, the unconfoundedness approach computes a weighted difference of outcomes in treated com-
munes versus control communes which have similar pre-treatment characteristics to the treated units. The
larger the similarity is, the higher is the weight for the control unit. In particular, denote the pre-treatment
characteristics as Fk,w∗−1 = {Xk,w∗−1, Zk} and Cw,k as the number of new cases in week w and commune
k. Following the notation from Callaway and Li [2021], we estimate:

ATT c
w = E[w(treatmentck, Fk,w∗−1)(Cw,k −mC

0,w(Fk,w∗−1) (5)

where ATT c
w corresponds to the average effect on the treated by treatment c, and the weights correspond

to:

w(treatmentck, Fk,w∗−1) =
treatmentck

E[treatmentck]
−

p(k,Fw∗−1)
1−p(k,Fw∗−1)

(1− treatmentck)[
p(Fk,w∗−1)

1−p(Fk,w∗−1)
(1− treatmentck)

]
Finally, the untreated potential outcomes correspond to

mC
0,w(Fw∗−1) = E[Cw|Fk,w∗−1, treatmentck = 0]

.
The untreated potential outcome of a treated unit k in a week w comes from outcomes of untreated

units similar to k in week w. Their expectation is unbiased for the untreated potential outcome under the
assumption 1. Concretely, we implement this method by estimating propensity scores p(Fk,w∗−1) with logit
and outcome regression mC

0,w(Fk,w∗−1) with OLS. The method is double robust because it is robust to the
misspecification in either propensity scores or conterfactual regression of potential outcomes. The method
relies on the assumption that the pandemic trajectory would be similar in the treatment and control groups
after conditioning on the Fk,w∗−1. We argue for the validity of this assumption in the section 4.2.5. Note
that we estimate four effects: one for each treatment versus the control group of communes in the first tertile
of exposure. Hence, we estimate the effect in four samples where each sample contains units from the control
and one of four treatments. Figure 11 plots the results of the estimation together with 95% confidence bands
calculated with multiplier bootstrap.
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Figure 11: Event Study: Covid-19 and tourism opening

Note: The estimates come from the unconfoundedness approach by Callaway and Li
[2021]. Red points correspond to the estimates for pre-treatment periods. The reference
point in a pre-treatment period t is the previous period t− 1. Blue points correspond to
the estimates for post-treatment periods. The post-treatment periods’ propensity scores
and outcome regression are based on the last period before the policy w∗−1. Control units
are communes in the first tertile of exposure. The shaded area represents simultaneous
95% confidence bands with clustering at the commune level. The date corresponds to the
last day of the week.

The results are consistent with the hypothesis that the policy precipitated the arrival of the infections’
wave, and that tourists brought the disease back to their home counties. Namely, communes in counties
with ski resorts experienced a higher number of infections after the opening. They have about five additional
infections per 10 000 in the third week after the opening comparing to the control. The effect is statistically
and economically significant as it represents a 70% increase with respect to the pre-policy average in these
communes. We interpret this as the on impact treatment effect. It is not obvious why communes without ski
facilities but in counties with ski resorts experienced impact equivalent to ski resort communes. There may
be many interactions between the communes with ski resorts and without ski resorts in the same county.
For instance, people may be going skiing or to work in nearby ski resorts. Figure 19 in the appendix shows
that commuting to ski resorts communes is stronger than across no ski-resort communes, but magnitude of
commutes are not large.

The early increase in cases is absent in communes in the second and the third tertile of exposure. However,
communes with medium and strong connections see an increase in infections compared to control starting
in the fourth week after the opening. This could be the result of secondary infections from tourists bringing
the disease back home and spillovers from other communes. Moreover, we see a monotonicity of this effect
in the strength of connection: communes in the third tertile have a higher increase in cases than communes
in the second tertile. While this is consistent with the story of tourists contributing to the diffusion of the
virus, these differences are not statistically significant.

The above analysis provides suggestive evidence that the opening of hotels contributed to the diffusion
of COVID-19 through touristic gatherings and travels. In particular, the wave of infections arrived earlier in
the counties with ski resorts. Moreover, there were more infections in counties with ski resorts and counties
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strongly connected to ski resorts than counties weakly connected to ski resorts. Note, however, that this
exercise does not allow us to conclude whether the opening of tourism caused or did not cause the second
wave of the pandemic in Poland. While we find differential trends in infections by exposure to tourism, there
are no units that would not be affected by the policy at medium or long term. Hence, there is no plausible
counterfactual which would allow for the evaluation what would happen in the absence of the policy at
medium or long term.

4.2.5 Robustness

The method developed by Callaway and Li [2021] relies on the assumption that applying the propensity
score weights and the regression to control units can predict the counterfactual outcomes for treated units.
In other words, control-based predictions should replicate the potential trajectory of infections in the treated
communes that would have happened in the absence of the policy. While it is impossible to test the
counterfactual’s performance during the time of the intervention, one can look at periods before the policy’s
enactment. In particular, conditional on Fk,w∗−1, there should be no difference in the outcomes between
treated and control communes before February 12th.

Hence, as the first check, we extend the study period until November 2020 to examine the pre-policy dif-
ferences. We compare the counterfactual predictions22 and the treated outcomes before the implementation
date and we find no considerable differences as shown on the figure 21 in the appendix.

As the second check, we perform a placebo exercise where we set the treatment timing to start a month
before the actual implementation date. We expect no differences between the ”treated” trajectory and the
control-based predictions as the actual policy has not started yet23. Figure 22 confirms this intuition showing
no major differences between the treated and control communes after the placebo date. While there are some
deviations from 0, they are small and opposite to the policy effect. Hence, we believe the method provides
a reasonable counterfactual trajectory for the treated communes.

In addition to the opening of hotels and ski resorts, the government changed some other restrictions
during the study period. We take steps to ensure that these additional changes are not driving our results.
Firstly, simultaneously to lifting the closure of hotels, Polish authorities allowed theatres, cinemas, swimming
pools, and outdoor sports venues to resume their activity. For this reason, the main specification includes
the per capita number of theatres, cinemas, and sports venues 24 as conditioning variables. Consequently,
treatments and control groups should be balanced with respect to the availability of these venues; hence,
this should not affect their infection dynamics deferentially. Secondly, the Polish government introduced
stricter measures in four regions 25: on the 27th of February in Warminsko-Mazurskie, and then on the 15th
of March in Pomorskie, Mazowsze, and Lubuskie. The measures included closing hotels, theatres, sports
venues, malls, and remote learning for primary schools. These measures covered the entire country starting
on the 20th of March. Note that none of these regions contains ski resorts. As a robustness check, we
repeat our analysis excluding these four regions from the sample. The results (presented in the appendix
in the figure 20) are qualitatively unchanged, albeit less precise. Finally, some nationwide changes were
implemented, such as mandatory quarantine for certain international travelers and mandatory covering of
the face with a medical-grade mask (as opposed to bandanas). As these measures are national, we do not
expect they would affect our treatment and control groups differently.

5 Cost-Benefit Analysis

While opening the hotels and ski lifts revived the tourism industry, it also produced public health costs. We
evaluate the policy by quantifying its costs and show that they are larger than the benefits.

22Note that the pre-treatment counterfactual predictions are based on the preceding period, while post-treatment predictions
are based on the last period before the policy, which results in a longer prediction horizon

23The main difference with the previous check is a longer prediction horizon for the counterfactual outcomes trajectory
24As reported by the Central Statistical Office.
25There are in total 16 regions in Poland.
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We assume that the primary costs stem from increased usage of healthcare resources and deaths. Consider
first the hospital costs. Accounting for the probability of hospitalization from Covid-19, its length, and fees
in Poland (based on Orlewska et al. [2021]), each case has an expected healthcare expenditure worth $275.
Next, consider the cost of Covid related deaths. Computing the cost of lives lost requires identifying fatality
likelihood and assigning a value to each life. The fatality rate of Covid-19 in the period of interest in Poland
is 2.7% 26. We use information provided in Robinson et al. [2021] to monetize the value of life. In particular,
they combine the constant value per statistical life-year (VSLY) and age distribution among Covid-19 deaths
to calculate the expected cost of years lost due to a Covid infection. They assign $4.47 million per life lost
to Covid, which results in an expected death cost of $120 690 per infection. We chose this measure for
two reasons. Firstly, Covid-19 deaths are concentrated among the elderly, and the VSLY measure accounts
for their older age. Secondly, this technique gives the lowest estimate among other methods proposed by
Robinson et al. [2021], and hence it helps construct a lower bound on costs. Summing up the healthcare
expenditures and the value of life lost, each case is associated with an expected cost of $120,965.

The policy caused 134,886 additional infections throughout the country. We obtain this number by
summing the estimated treatment effect across populations of all affected areas in the periods after the
implementation. Note that given the 2.7% fatality rate, we expect 3642 deaths were due to the opening.
The policy’s total cost is the product of infections times their expected cost, which is $16.316 billion.

Estimating the benefits is more challenging because we only have granular data on spending from the
vouchers. Nevertheless, we can identify the upper bound of policy’s contribution to the GDP. According to
the Polish Ministry of Sport and Tourism, touristic expenditures in the first quarter of 2021 totaled $0.877
billion. Even if all this spending stemmed from the policy, it would still be only about one twentieth of the
lower bound on the cost. Hence we conclude that the policy’s cost vastly surpassed its benefits.

The policy benefited only tourists coming to the ski resorts. By the revealed preferences, we conclude
that they have enjoyed a positive surplus because they chose to go skiing despite the risk of infections. On
the other hand, people outside ski resorts who are not tourists were worse off because they experienced
negative externalities of the policy without any benefits. A priori, the results for the ski resorts’ inhabitants
are ambiguous. From our results it is clear that they did not benefit from the policy. It caused 13,448 new
cases in communes with ski facilities which led to a cost of $1.626 billion. This number is still higher than the
upper bound on the benefits. The costs would surpass policy’s benefits as long as the number of produced
infections exceeded 7250, or alternatively as long as there were more than 197 deaths. Note that a wider
access to vaccinations and treatments could potentially make the policy beneficial. However, at the time of
the opening only 1.4% of Poles were fully vaccinated.

Tourism during the pandemic is a risky behavior. It exposes tourists to the virus and subsequently it
contributes to a wider diffusion of cases among the general population. This negative externality produced
costs which vastly outsized the benefits of hotels opening. Even the ski resorts were worse off, despite the
intent of the policy. The only beneficiaries were tourists, particularly those with children, who could enjoy
subsidized travel. Both the voucher and the opening may be seen as a transfer from the general population
to the families with children, which the Polish Government tends to favor.

6 Conclusion

Tourism plays a vital role in providing income for many local economies. However, while important for
economic reasons, it also encourages long-distance travel and gatherings. Moreover, touristic services often
require risky in-person interactions. These features make tourism a transmission vector for various infectious
diseases. We hope that our analysis will provide some guidance for policymakers struggling to balance the
trade-off between economic and public health goals related to the opening of the tourism industry.

In this paper, we investigated how the opening of hotels and ski facilities impacted touristic consumption,
mobility and Covid-19 outcomes. The opening was followed by large movements of tourists to locations with
ski facilities. Areas with many hotels in proximity to the ski trails experienced an exceptionally high influx of

26calculated as the ratio of deaths to cases lagged by two weeks
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visitors and spending. Travels often originated from distant locations, and hence the probability of meetings
between individuals residing far from each other increased after the policy. Additionally, there has been
an increase in meetings between pairs of individuals such that one person lives in a touristic and one in a
non-touristic location. These observations point out the strong impact of tourism opening on mobility.

Travelers have a high potential to carry the disease between distant locations. This is particularly
dangerous when they also participate in gatherings. Visitors of ski resorts could only gather in their hotel
rooms and on trails as the restaurants were closed. Nonetheless, there is suggestive evidence that they
impacted the Covid-19 trajectory. We showed that having a ski facility in a county is correlated with an
increase in infections after the policy. Moreover, counties with frequent meetings with ski resorts during the
opening had more infections than counties with few such meetings.

We believe that our results can be extrapolated to other settings involving mass tourism. We think
that travels and gatherings are the main factors driving additional infections related to tourism opening.
As long as these two elements are present, one may expect an increase in the number of cases, although
of different magnitude depending on the circumstances. While the effects may be more substantial during
winter because people spend more time indoors, there is still a considerable amount of close interactions in
touristic activities during other seasons. For instance, travelers still share public means of transportation,
and locals engage in repeated interactions with tourists when providing them services. Hence, additional
opportunities for transmission still arise.

Our study shows that engaging in touristic activity can generate negative externalities as it contributes to
the spread of infections. Hence, it might be reasonable to impose some additional costs, such as post-travel
quarantine, for people involved in tourism.

We note that the policy was enacted before the full distribution of Covid-19 vaccines. These could
potentially mitigate the impact of tourism on Covid-19. Nonetheless, long-distance travellers have a high
potential to carry novel variants to new locations. Future research could explore whether tourism activity is
associated with a faster arrival of new variants.
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7 Appendix

Figure 12: National traffic

(a) Average Weekly Car Traffic

Note: Figure shows average weekly number of passenger
cars passing through traffic control points. There are 35
traffic control points equipped with high accuracy cam-
eras distributed throughout the main Polish roads moni-
toring constantly. For visualization purposes, each point
is assigned to the last day of its week (Sunday). Dotted
lines represent the start and the end of the hotels open-
ing. Source: Own elaboration based on the data from
General Directorate of Roads and Motorways

(b) Monthly Number of Railway Passengers

Note: Figure shows the number of passengers transported
nationwide by railway in each month. For visualization
purposes, each point is assigned to the 15th day of its
month. Dotted lines represent the start and the end of
the hotels opening. Source: Own elaboration based on
data from the Railway Transportation Authority

Table 1: Summary statistics

(a) Population data

Number of unique tiles 34592
Number of tiles with any hotels 4203
Number of tiles of in proximity to ski resorts 3316
Minimum number of users on tile 10
Maximum number of users on tile 8693
Average number of users per tile 01:00-09:00 70
Average number of users per tile 09:00-17:00 81
Average number of users per tile 17:00-01:00 78
Note: Each observation counts the number of FB users
on a tile in an 8-hour window. Data is omitted for
privacy reasons if there are fewer than 10 users. If a
user was on several tiles during the 8-hour period, they
are assigned to the tile from which they were logging the
most often (modal tile). The period covered is January
6th 2021-March 31st 2021 Source: Facebook Data for
Good

(b) Colocation data

Number of unique links 68820
Average number of users
with a consistent home per county 768
Average colocation probability 2.84 ∗ 10−6

Minimum colocation probability 9.89 ∗ 10−11

Maximum colocation probability 0.00156
Note: Each observation corresponds to the probabil-
ity that two randomly drawn users from two chosen
counties meet in a randomly drawn 5-minute inter-
val in a given week. A meeting is defined as being
present on the same tile (0.6km × 0.6km) during a 5-
minute interval. A user’s home county is defined as
one where she/he spent at least 6 nights in 10 days in-
tervals around the date considered. User is discarded
from computations if there is no consistent night loca-
tion. Data is omitted for privacy reasons if there are
fewer than 10 users. The period considered begins on
the third week of January (with the last day 01-09-
2021) and ends with the second week of April (with the
last day 04-13-2021). Source: Facebook Data for Good
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Figure 13: Data summary statistics

(a) Quantiles of FB tile population

Note: The lighter shaded area corresponds to the 10th

and 90th quantiles of the population on tiles in a given
8 hour period. The darker area corresponds to the 25th

and 75th quantiles. The red line represents the median.
White breaks show missing data. The X-axis shows time
which comprises the date and the 8-hour window. Source:
Own elaboration based on Facebook data

(b) Quantiles of colocation probabilities

Note: The lighter shaded area corresponds to the 10th

and 90th quantiles of colocation probability in a given
week. The darker area corresponds to the 25th and 75th

quantiles. The red line represents the median. The X-
axis shows the last day of the week. Source: Own elabo-
ration based on Facebook data

Facebook data construction and spatial-temporal trends

Facebook geolocation data comes from users who have a Facebook app installed on their phones, and their
location history is turned on. Their spatio-temporal records are used to calculate various measures, including
Population and Colocation datasets.

Population

Population measures the number of users at a location A in a time-window t. It is computed in the following
way.

Assignment of a user to location Map of a country is divided into 3km x 3km tiles. Each 24h is split
into three time-periods with breaks 00:00, 08:00, and 16:00 UTC. User is assigned to tile A during time
window t if they were pinging from a location on tile A in the time window t. If the user pinged from more
than one tile during the time window, they are assigned to their most frequent tile.

Aggregation The population at time window t and at the tile A is the number of users who logged from
A in time window t.

Privacy concerns

For privacy reasons, FB does not show data based on fewer than ten users. Given a small size of tiles, there
may be many with fewer than 10 users. This is especially true for areas without towns or villages. Mobility
in such sparsely populated places may be difficult to estimate. Nonetheless, it is easy to identify when data
is missing due to few users present which alleviates the problem.

Spatial-temporal trends Figure 14a shows trends in the daily number of users present in the Population
dataset during the study period. The number is relatively stable at about 1 900 000, constituting about
5% of the Polish population. Weekends usually see fewer users than weekdays. There were five days in
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late January when the number of users was undercounted due to technical difficulties. Nonetheless, these
dates are considerably before the policy and do not threaten our strategy. The map on the figure 15a shows
the average baseline spatial distribution of the users. The baseline number of users was calculated over 90
days before the data was launched (April 2020). Data relatively well reflects the geographical structure of
the Polish population. The tiles with the highest number of users correspond to Poland’s large population
centers. There are some tiles without enough users to cross privacy threshold in northern Poland which
correspond to sparsely populated areas27.

Colocation

Colocation measures the probability that two randomly chosen users from county r and s were within the
same location. It is constructed in the following process.

Assignment of home counties to users. First, a map is divided into administrative units (counties in
the case of Poland). Next, each user is assigned a home county based on their nighttime location. Only
users who pinged at least three times for each date are counted. The modal location between 8 pm and 6
am is then registered as the user’s nighttime location. User is assigned a home in county r if they spent at
least 6 out of 10 nights in county r. Let nr be the number of all users assigned home in county r.

Intersecting users trajectories The goal is to check whether users were at the same place simultaneously.
Only users who have location updates sufficiently often are taken into account 28. A week is divided into 5
minutes intervals, and the map is divided into small 0.6km x 0.6km tiles29. Two users met or co-located if
their application pinged from the same tile within a 5-minute interval.

Computing colocation measure Let XtAr be the number of users assigned to home county r who pinged
on tile A in the 5 minute time interval t. Similarly, let XtAs be the analogous number of users assigned to
home county s. Then, the number of collocations produced on tile A at time t between users from counties
r and s is the product XtArXtAs. Data is aggregated across all tiles on the map and across all 5 minutes
intervals in a week w to compute the number of colocations in the week w: mrs,w =

∑
tA XtArXtAs. The

colocation probability is then the ratio of all actual meetings and all potential meetings in that week, that
is: Pr(Colocationrs,w) = mrs

2016nrns
, where 2016 is the number of all five-minute intervals in a week. The

procedure is then repeated weekly.

Spatial-temporal trends Figure 14b shows the total number of weekly users (with complete trajectories)
available to calculate colocation probabilities. The number varies between 230 000 and 260 000. It is
considerably smaller than the Population dataset. This is expected as the requirements to include someone
in colocation data are more stringent than for the population data (consistent home, relatively complete
trajectories). There is a very slight downward trend during the study period. Map 15b illustrates the
average share of county population used to calculate colocation probabilities. These shares are usually
between 0.25% and 1% of the total county population. A clear trend arises where a higher share of the
population is available in western counties. This follows approximately economic patterns. The divide
seems, however, orthogonal to the location of ski resorts.

Usage Predictors

We check whether the main demographic and economic variables correlate with the population share using
Facebook geolocation. We pull a set of characteristics at the county level from the Polish Statistical Office
for the year 2000. The variables are summarized in table 2. Next, we regress the average share of the

27Note that we cannot calculate penetration rate as we do not know true population at a tile level
28See Iyer et al. [2020] for technical details
29Note that these are smaller tiles compared to population dataset
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Figure 14: Temporal trends in Facebook base

(a) Population data

Note: Dots represent the daily number of FB users
present in the Population dataset in Poland. Number
of users on a given date is an average across three time
windows of that day. Vertical dotted lines show the tim-
ing of the policy. Note that there were technical issues
with data generation on five dates: January 17,18,23,24,
and 31.

(b) Colocation data

Note: Dots represent the number of FB users in each
weak whose data were used to calculate colocation prob-
abilities in Poland. Vertical dotted lines show the timing
of the policy.

Figure 15: Spatial trends in Facebook base

(a) Population data

Note: Map shows the average baseline number of FB
users on each tile. The baseline is calculated as the mean
number of users on a given day-of-the-week and time-
window combination across 90 days prior to April 2020
(before pandemic). The map takes average across all day
of the weeks and time windows. Grey areas have no data
available. The color becomes lighter as log(Population)
increases.

(b) Colocation data

Note: Map shows the average share of county population
used to calculate colocation probabilities. The average
share in county i is calculated as the mean number of
users with home at county i taken across all weeks di-
vided by the total population in this county. The shares
are divided into 6 quantiles with dark blue being highest
shares and light yellow being lowest shares. White color
correspond to no data.
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population feeding colocation data (pre-policy) on the county’s characteristics. The results are presented in
the table 3.

Results suggest that counties with high Facebook geolocation usage are younger, more female and more
urban. Moreover, they tend to do better economically as evidenced by the negative coefficient on the share
unemployed. On the other hand, they seem to have slightly worse infrastructure in terms of access to
healthcare, roads density, and cinemas. Facebook users with geolocation seems to also be more prevalent
in counties with more hotel beds. Hence our estimates may put more weight on the movements in these
populations. Note, however, that these patterns do not introduce bias in the strategy, as that would require
interaction between users’ characteristics and the policy timing.

Table 2: Demographic and Infrastructure Variables

Statistic Mean St. Dev. Min Max

Share in colocation data 0.006 0.002 0.003 0.024
Population 100,920.100 120,344.900 19,689 1,794,166
Population per 1km2 362.398 647.498 19 3,690
Share male 0.488 0.009 0.456 0.510
Share age≤14 0.152 0.016 0.110 0.225
Share age≥65 0.182 0.023 0.118 0.284
Share living in urban areas 0.503 0.272 0.000 1.000
Share of university students in the population 0.011 0.031 0.000 0.197
Share unemployed 0.052 0.022 0.016 0.145
Average monthly salary 4,772.427 582.086 3,872.060 8,920.410
Roads per capita 0.009 0.005 0.001 0.033
Doctors per capita 0.002 0.001 0.0001 0.008
Hotel beds per capita 0.025 0.061 0.0002 0.419
Libraries per capita 0.0003 0.0001 0.00003 0.001
Cinema seats per capita 0.005 0.006 0.000 0.033

Impact of opening on colocation

Suppose that the number of tourists who would come from a county s to a county r is proportional to the
length of the trails in the county r (LPr) and the number of people in the county s. Hence, we have αLPrns

tourists from s potentially coming to visit r (where α is a proportionality factor). Now, we want to know
the number of additional meetings that will occur once the trails are open. In order to have a meeting,
individuals need to be in the same space within a five-minute interval. For the moment, assume that every
visitor from s to r stays in r for the same amount of time and that space aspect does not matter. That is,
suppose that the probability that a tourist meets a local during their stay is δ. So a tourist meets on avarege
δnr locals during their stay. Consequently, the additional number of colocation events is αδLPrnsnr. Hence,
the probability of colocation after the opening is:

Pr(Colocationrs|After) =
mrs0 + αδLPrnsnr

2016nrns
=

mrs0

2016nrns
+ αδLPr

where mrs0 is the default number of meetings before the opening captured by the fixed effects. Taking
logs we have that

log(Pr(Colocationrs|After)) = log(mrs0 + αδLPrnsns)− log(2016nrns)

Taking the difference between after and before the policy implementation we obtain:
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Table 3: Geolocation usage predictors

Dependent Variable: Share in colocation data
Model: (1)

Variables
(Intercept) 0.0292∗∗∗

(0.0099)
Population 3.21× 10−10

(8.03× 10−10)
Population per 1km2 −2.63× 10−7

(2.03× 10−7)
Share male -0.0513∗∗∗

(0.0184)
Share age≤14 0.0242∗∗∗

(0.0093)
Share age≥65 -0.0077

(0.0078)
Share living in urban areas 0.0037∗∗∗

(0.0006)
Share of university students in the population 0.0069

(0.0043)
Share unemployed -0.0150∗∗∗

(0.0038)
Average monthly salary −8.89× 10−8

(1.49× 10−7)
Roads per capita -0.0384

(0.0248)
Doctors per capita -0.4296∗∗∗

(0.1054)
Hotel beds per capita 0.0028∗∗

(0.0012)
Libraries per capita 1.369

(0.8603)
Cinema seats per capita -0.0337∗

(0.0185)

Fit statistics
Dependent variable mean 0.00628
R2 0.38799
Observations 377

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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log(Pr(Colocationrs|After))− log(Pr(Colocationrs|Before)) =

log(mrs0 + αδLPrnsnr)− log(2016nrns)−
(log(mrs0)− log(2016nrns)) =

log(
mrs0 + αδLPrnsnr

mrs0
) ≈ αδnsnr

mrs

(6)

Now let us add the hotel beds to the analysis. Assume that the hotel beds attract some additional tourists
from county s and that tourists stay longer in ski resorts. In particular, suppose that the number of new
visitors is proportional to the number of beds available for them. Hence we have τHrns new visitors from s
to r (in addition to those who would come just for open trails) where Hr is the number of hotel beds in r and
τ is a proportionality constant. Additionally, visitors coming for skiing can now stay longer. Assume again
that a share of them proportional to the number of beds stay longer. Hence more meetings can take place.
Suppose that the share ζHr of tourists who stay longer produce κ more meetings than a tourist who does
not stay in a hotel. Let us some up all the new terms. First, we have tourists who come skiing but don’t stay
for the night: (1− ζHr)αLPrns. Second, we have tourists who come because hotels opened: τHrns. Third,
we have tourists who come skiing and stay for the night: (ζHr)αLPrns. In total, we obtain the following
expression for the colocation probability after the opening of hotels and trails:

Pr(Colocationrs|After) =
mrs0 + (δαLPrnsnr)ζHr + δτHrnsnr + (κδαLPrnsnr)(1− ζHr)

2016nrns

= (δαLPr)ζHr + δτHr + (κδαLPr)(1− ζHr)

(7)

Taking again the difference of logs before and after the policy we obtain:

log(Pr(Colocationrs|After))− log(Pr(Colocationrs|Before)) ≈
(δαLPrnsnr)ζHr + δτHrnsnr + (κδαLPrnsnr)(1− ζHr)

mrs

(8)

Event studies in the number of Covid-19 Cases Figures 16a and 16b show the coefficients from
the health outcomes event study in the full and matched sample, respectively. We estimated the following
regression to obtain the coefficients:

ykw =
∑

W ∈ {{01/17 : 01/31},
{02/14 : 05/02}}

Ski resortkI(w = W )βW +Xkwδ + ζk + πw + ϵklw
(9)

Where ykw represents the number of cases per 10 000 in a commune k and a week ending at date w. The
dummy Ski resortsk takes value 1 if the commune k contains a ski resort, and the indicator I(w = W ) is
one if the week at hand is equal to W . The interaction between these two terms measures the differential
trend in the cases per 10 000 in communes with versus. without ski resorts. Xkw contains controls for the
share of fully vaccinated two weeks ago and the number of negative tests per 10 000. We allow for time πw

and commune ζk fixed effects, and we cluster the errors at the commune level. Figures 16a and 16b plot βW

coefficients from either estimation on the full sample or matched sample. The results are consistent with
the unconfoundedness approach and suggest that the opening of hotels sped up the arrival of second-wave
to communes with ski resorts.
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Figure 16: Event study: Covid-19 cases and hotels opening

(a) Covid cases: full sample

Note: The regression coefficients were calculated on the
full sample. The date corresponds to the last day of the
week. Source: Own elaboration based on the Ministry of
Health Data

(b) Covid cases: matched sample

Note: The regression coefficients were calculated on the
matched sample. Each treated unit was matched with
one untreated units (first quantile of connection). Units
were matched by the distance in the propensity scores
computed on characteristics in the last period before the
policy. The date corresponds to the last day of the week.
Source: Own elaboration based on the Ministry of Health
Data
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Figure 17: Spatial distribution of communes with ski resorts

Note: The communes colored in white contain ski resorts. Source: Own elaboration based on data collected from internet
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Figure 18: Spatial distribution of the touristic appeal

Note: Colors correspond to the touristic appeal. Source: Own elaboration based on data from Polish
Statistical Office and own data

Figure 19: Commuting in counties with ski resorets

Note: The shares are calculated from data on commuting be-
tween communes in 2014 (the most recent available data). A
share of working age commuters corresponds to the share of
working age population in a commune j commuting to work
in a commune i. The averages are taken across types of pairs.
No resorts communes are communes without ski resorts and re-
sort communes are communes with ski resorts. The sample is
restricted to counties containing ski resorts. Source: Own elab-
oration based on data from Polish Statistical Office
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Figure 20: Event Study: Covid-19 and tourism opening restricted sample

Note: This figure replicates figure 11, but excluding 4 regions which changed restrictions
during the study period. As the sample size decreased, some covariates could no longer
be used for conditioning due to convergence issues in estimating propensty scores. In
partiular, the following covariates were excluded: population size, population density,
and whether the commune is a county. The estimates come from the unconfoundedness
approach by Callaway and Li [2021]. Red points correspond to the estimates for pre-
treatment periods. The reference point in a pre-treatment period t is the previous period
t − 1. Blue points correspond to the estimates for post-treatment periods. The post-
treatment periods’ propensity scores and outcome regression are based on the last period
before the policy w ∗−1. The shaded area represents simultaneous 95% confidence bands
with clustering at the commune level. The date corresponds to the last day of the week.
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Figure 21: Event Study: Covid-19 and tourism opening; extended pre-period

Note: This figure replicates figure 11, but it extends the preperiod until November 2020.
Vaccinations and deaths variables can no longer be used for conditioning as the data starts
in 2021. The estimates come from the unconfoundedness approach by Callaway and Li
[2021]. Red points correspond to the estimates for pre-treatment periods. The reference
point in a pre-treatment period t is the previous period t− 1. Blue points correspond to
the estimates for post-treatment periods. The post-treatment periods’ propensity scores
and outcome regression are based on the last period before the policy w∗−1. The shaded
area represents simultaneous 95% confidence bands with clustering at the commune level.
The date corresponds to the last day of the week.
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Figure 22: Event Study: Covid-19 and tourism opening; placebo timing

Note: This figure replicates figure 11, but it sets a placebo treatment date on the 14th
of January. Vaccinations and deaths variables can no longer be used for conditioning
as the data starts in 2021. The estimates come from the unconfoundedness approach
by Callaway and Li [2021]. Red points correspond to the estimates for pre-treatment
periods. The reference point in a pre-treatment period t is the previous period t − 1.
Blue points correspond to the estimates for post-treatment periods. The post-treatment
periods’ propensity scores and outcome regression are based on the last period before
the policy w ∗ −1. The shaded area represents simultaneous 95% confidence bands with
clustering at the commune level. The date corresponds to the last day of the week. The
dotted line represents the actual start of the actual.
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