
Opening of hotels and ski facilities: impact on mobility, spending,

and Covid-19 outcomes

Abstract

This paper investigates how reopening hotels and ski facilities in Poland impacted tourism spending,
mobility, and COVID-19 outcomes. We used administrative data from a government program that
subsidizes travel to show that the policy increased the consumption of tourism services in ski resorts. By
leveraging geolocation data from Facebook, we showed that ski resorts experienced a significant influx
of tourists, increasing the number of local users by up to 50%. Furthermore, we confirmed an increase
in the probability of meetings between pairs of users from distanced locations and users from tourist
and non-tourist areas. As the policy impacted travel and gatherings, we then analyzed its effect on the
diffusion of COVID-19. We found a significant association between tourist movements and the severity of
a major pandemic wave in Poland. In particular, counties with ski facilities experienced more infections
after the reopening. Moreover, counties strongly connected to the ski resorts during the reopening had
more subsequent cases than weakly connected counties.
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1 Introduction

Regulating risky behaviors often requires balancing competing policy goals. Maximizing utility or income
through risky activity comes at the expense of the health of risk-takers and individuals not engaged in the
risky behavior. Such negative externalities present a particular challenge in designing an efficient policy, as
decision-makers often lack information on the magnitude of the social costs of risky behaviors.

The COVID-19 pandemic offers a unique setting to investigate the trade-off between individual freedoms
and the negative externalities they generate (Stiglitz [2021], Stoddard et al. [2021]). This study opportunity
arises as authorities attempted to balance stimulating economic activity and preventing infections (Alvarez
et al. [2020], Acemoglu et al. [2021], Caulkins et al. [2021]).

The reopening of tourism during a pandemic is an instrumental case. Engaging in tourism has consid-
erable potential for negative spillovers during a pandemic. Tourism creates long-distance movements of the
population (Mangrum and Niekamp [2020]) and, as such, can contribute to the spread of infectious diseases
(Belik et al. [2011], Bajardi et al. [2011], Findlater and Bogoch [2018]). Simultaneously, tourists generate
significant income for local economies. Therefore, any decisions concerning tourist activity require balanc-
ing the trade-off between economic and public health outcomes. However, there is currently no evidence
quantifying the impact of tourist mobility on the diffusion of infections. This paper aims to fill this gap by
analyzing the effects of the reopening of Polish tourism on tourist consumption, mobility, and the spread of
COVID-19.

Our study design takes advantage of a unique policy that reopened all hotels and ski lifts in Poland. On
February 12th, 2021, the Polish government reopened ski lifts and hotels at 50% capacity, with food supplied
through room service only. At the same time, authorities reopened only cinemas, theatres, and operas at
50% capacity with mandatory mask usage 1. The hotels and ski lifts remained open until the 20th of March,
when the second wave of infections ravaged the country.

1Such entertainment facilities rarely operate in ski resorts
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This setting is particularly relevant as ski resorts play an essential role in the local economies and the
Polish tourism industry. While on the national scale, only 2.2% of working Poles are employed in businesses
related to hospitality or recreation (H&R), areas with ski resorts rely heavily on income from these sectors.
Almost 10% of all businesses active in towns with more than three ski lifts are related to H&R2.These
locations are vital for the tourism industry. Nearly 9% of the country’s H&R businesses were located in
communes with some ski facilities, constituting 3% of all communes. Moreover, these communes were home
to 15.5% of all hotel beds in the country. Hence, the policy of reopening hotels and ski resorts could strongly
affect economic activities related to tourism.

We show that the policy indeed caused a significant increase in tourism spending and movements of
tourists. First, we relied on the usage of government travel subsidies data to document a swift growth in the
consumption of tourist services at ski resorts after the reopening. Second, using aggregated and anonymized
geolocation data from Facebook (FB) and an event study framework (similar to Dave et al. [2021a]), we found
that the policy’s implementation increased the number of FB users in ski resorts by 25%–50%. Moreover,
there was a surge in the probability that users from tourist and non-tourist areas were able to meet, as well
as those normally living far from each other.

While the number of travelers and tourist gatherings increased due to the reopening policy, its effect on
COVID-19 outcomes is not apparent. On the one hand, visitors could carry the disease from their homes
to tourist locations and back. On the other hand, they could only gather in their rooms or outdoors as
restaurants were closed. To learn more about the impact of the policy on COVID-19 cases, we collected
granular infection data and used the uncofoundedness approach from Callaway and Li [2021]. We utilized
this newly developed method because traditional fixed effect models have performed poorly in the presence
of non-linearities inherent to patterns of COVID-19 diffusion (Gauthier [2021], Goodman-Bacon and Marcus
[2020]). We found that counties with ski resorts saw additional cases within the third week of the reopening.
Such an early effect is absent in other counties. Moreover, counties strongly interacting with ski resorts
during the reopening had a higher incidence of infections than counties with weak interactions. This result
is consistent with a secondary spread from tourists bringing the virus back home.

The epidemic has sparked a large body of literature related to COVID-19; however, relatively little
research has been dedicated to the effect of tourism on infections. Researchers have shown that industry
closures and stay-at-home orders have had a limiting impact on both mobility and subsequent COVID-
19 outcomes (Fang et al. [2020], Gupta et al. [2020], Lyu and Wehby [2020], Beria and Lunkar [2021],
Courtemanche et al. [2020], Abouk and Heydari [2020], Badr et al. [2020], Lau et al. [2020], Morley et al.
[2020], Xu et al. [2020], Goolsbee and Syverson [2021]). Fewer papers analyzed reopening. An exception is
Nguyen et al. [2020], who found that lifting restrictions led to a 6–8% increase in mobility.

Opening the tourism industry can lead to travel and large gatherings, and there has been some evidence
relating these phenomena to viral spread. One of the seminal papers on this topic is Adda [2016], which
demonstrated that school vacations and transportation strikes disrupted viral transmission. More recently,
Chernozhukov et al. [2021], Andersen et al. [2021], Courtemanche et al. [2021], Bravata et al. [2021] ,
Goldhaber et al. [2021] linked school and college operating schedules to the local prevalence of infections.
However, the reopening of schools has substantially different effects than tourism reopening, as children are
less likely to suffer severe consequences of COVID-19 (Castagnoli et al. [2020], Dong et al. [2020]).

Closer to our population of interest, i.e., adults, are studies analyzing sports, social, and political gath-
erings. Large sporting events such as hockey, basketball, and football games can lead to higher COVID-19
prevalence (Carlin et al. [2021], Alexander et al. [2020], Breidenbach and Mitze [2021]). Similarly, smaller
gatherings such as birthdays or bar meetings increase the likelihood of subsequent infections (Harris [2020],
Whaley et al. [2021]). The evidence in the case of political gatherings is mixed. Palguta et al. [2021] found
an increase in the growth rate of COVID-19 in areas with elections, while Dave et al. [2020] concluded that
a political rally in Tulsa did not affect local COVID cases. They note, however, that the local population
enhanced social distancing, which could offset the effect of the gathering. This compensatory behavior is
unlikely for the reopening of tourism since local population will interact with incoming tourists by providing

2According to the data from December 2019 from the National Register of Business Entities (REGON). On the national
level only 3% of businesses are in H&R.

2



them with hospitality services. Economic and educational gatherings also enhance the local diffusion of
infections. Taylor et al. [2020] showed that proximity to livestock plants is associated with higher COVID
transmission. Rufrancos et al. [2021] provided evidence that COVID-19 cases spilled from universities to
surrounding neighborhoods.

Tourism can also encourage long-distance travel, and it has been shown that travelers contribute to the
diffusion of infections. Mangrum and Niekamp [2020] provided evidence that college students returning from
spring break trips accelerated the local spread of COVID-19 and the related mortality. Burlig et al. [2021]
analyzed how the length of the travel ban mattered for subsequent COVID-19 outcomes and showed an
empirical association between migrants traveling home and the following number of cases in their home area.
Finally, people attending large events with little protective behavior, such as the Capitol Riot (Dave et al.
[2021b]) or Sturgis Motorcylce Rally (Dave et al. [2021a]) bring the disease when traveling back to their
home counties. As the literature shows, long-distance travel and large gatherings are associated with the
diffusion of COVID-19. The reopening of tourism can encourage travel and gatherings and is highly relevant
for the viral spread.

Our main contribution is using a unique quasi-experiment to identify the causal effect of tourism on
mobility and infections. In particular, we leverage an interaction of two complementary policies which
produced a significant shock to tourist movement: (1) a limited-time policy that allowed the reopening of
hotels and ski facilities in Poland during the COVID-19 pandemic and (2) the availability of travel subsidies.
In addition, our study relied on novel geolocation data from FB, which permitted us to measure mobility at
a very granular scale in time and space. Furthermore, we provide quantitative answers to policymakers who
seek to understand the health and economic consequences of reopening tourism in their locations. We first
show that reopening ski resorts and hotels increased tourist spending and contributed to long-distance travel
and gatherings. Secondly, we provide evidence that reopening tourism accelerated the spread of COVID-19.
Finally, we show that the costs of the policy exceeded the benefits.

In the remainder of the paper, we first explain what data we use throughout the paper. The following
section (3) discusses empirical methods and results regarding impact of the policy on mobility. Analogously,
section 4 examines the effect of the policy on Covid-19 outcomes. The conclusion closes the paper.

2 Data

We compiled a unique dataset featuring mobility patterns of FB users, usage of government travel subsidies,
and administrative data on COVID-19 related outcomes from the Polish Ministry of Health.

2.1 Mobility

The data on mobility came from FB’s Data for Good initiative3. Since the start of the pandemic, it has
been used for various studies mapping human mobility in countries such as the UK (Shepherd et al. [2021]),
the USA (Kissler et al. [2020]), or Italy (Shtele et al. [2022], Pieroni et al. [2021], Spelta and Pagnottoni
[2021], Beria and Lunkar [2021]). The data originates from FB users who enabled the location services on
their devices. Note that manual location tagging is not required from the user. The location is captured
when FB or any other app using GPS is active. Users’ trajectories are aggregated and anonymized to show
patterns of spatial movements. We used two measures of mobility: population and colocation probabilities.
Basic information on the construction of these measures is presented below. A more detailed and technical
discussion can be found in the appendix. The reliability of the data naturally depends on FB’s penetration
of the social media market and geolocation usage. In the case of Poland, FB is the most popular social
media platform by far exceeding the competition (Hootsuite [2022], Statcounter [2022]). In early 2021,
approximately 78% of the traffic generated by social media to other websites in Poland was from FB.
Pinterest, with only 7%, was a distant second (Statcounter [2022]). In our data, we found about 1.9 million
users with their geolocation services turned on, just over 5% of the Polish population. This number was

3Data provided by the Facebook’s Data for Good Initiative: https://dataforgood.fb.com/. We thank Alex Pompe for his
help with the data
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relatively stable during the study period 4. It is incomparably larger than most traditional datasets providing
insights into mobility such as surveys or flight traffic data.

Nonetheless, the representativeness of such data is debatable, as specific demographics may be more
likely to use social media or geolocation services. Sloan and Morgan [2015] showed that Twitter users who
enable geolocation had different characteristics than users who do not. FB users may better represent the
underlying population, as Gibbs et al. [2021] showed that the number of FB users correlated strongly with
the local census estimates in the UK. Moreover, they found no specific relationship between age, ethnicity, or
poverty and FB usage. In the case of Poland, we saw an uneven distribution in the share of the population
feeding FB colocation data. As shown on map 16b in the appendix, FB has higher penetration in western
counties, which are more prosperous. Overall, the predictors of FB usage seem orthogonal to the location
of ski resorts, and we do not expect it to change in a short time around the policy. Moreover, colocation is
defined as a share of possible interactions among available users, so the measure is robust to changes in the
number of users.

It must be acknowledged that our estimates of mobility are specific to the population using FB in Poland.
Unfortunately, FB does not share the demographic structure of its base. However, in appendix 7 we identified
economic and demographic factors which correlates with consistent FB geolocation usage. Counties with
high usage of geolocation tend to be more female, younger, and urban, although the differences are minor. It
is also reassuring that FB mobility data has been shown to correlate well with other mobility sources, such
as geolocation from mobile operator O2 (Jeffrey et al. [2020]) and Google mobility measures (Pérez-Arnal
et al. [2021]). On the other hand, Desiderio et al. [2022] used open source data, e.g., train and flight traffic,
to argue that FB may underestimate long-distance movements. Such bias would make estimated effects on
long-distance travel conservative.

Overall, we are confident that FB’s data provided unique and reliable insights into mobility. Below we
discuss two measures used throughout the study.

Population The population at time window t and tile A is defined as the number of users who were
logging mostly from the tile A during the time window t. There were three time windows per 24 hours (with
breaks at 00:00, 08:00, and 16:00 UTC) and tiles were approximately 3km x 3km. Observations with less
than ten users are omitted for privacy reasons. We assigned tiles to counties based on their centroids. As
an example, consider figure 1a. It represents the population logging on the tiles covering Tatrzanski County,
a popular tourist destination, on the afternoon (17:00–01:00 ETC) of February 14th, 2021. The red dots
and blue dots indicate the location of hotels and ski facilities, respectively. We used hotels and ski facilities’
locations5 to classify tiles as tourist or non-tourist. Figure 1b illustrates the time series of the number of
users in Tatrzanski County. After the reopening of hotels, there was a clear uptick in the FB population.
See appendix for technical details, and appendix table 1a and figure 14a for the population data summary
statistics.

4See figure 15 and the discussion on the spatial-temporal trends in FB usage in the appendix
5We use ”hotel” for any accommodation facility. We found hotel and ski facility coordinates from the OpenStreetMaps

project (OpenStreetMap contributors [2017]). The location of ski facilities were scraped from www.narty.pl and validated
through own search
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Figure 1: FB Population data

(a) Hotels and population in Tatrzanski county on
the afternoon of the 14th February 2021

Note: The color of a tile represents the population, i.e.,
the number of users logging from the tile. Grey tiles
correspond to no records. Red dots represent coordinates
of hotels, and navy dots represent coordinates of skiing
facilities. Source: OpenStreetMap and own elaboration
based on Facebook data

(b) Number of FB users logging in between 17:00 and
01:00 in Tatrzanski county

Note: The count of users in Tatrzanski county represents
the sum of users from tiles with centroids in the county.
Users logging in multiple tiles during the 8-hour window
are assigned to the modal tile. Source: Own elaboration
based on Facebook data

Colocation Colocation data aim to approximate how often users from different regions meet. Technically,
it measures the probability that two randomly chosen users from county6 i and j were within the exact
location, i.e., the same 0.6km × 0.6km tile 7 at a randomly chosen 5-minute interval of a given week
(Wednesday to Tuesday) 8. We did not consider colocation between users from the same county. Note that
the colocation probabilities are small since the denominator is the number of possible pairs of users from
the two counties multiplied by the number of 5–minute intervals in a week. The user’s county of residence
is derived from a consistent history of night-time locations. The map in figure 2 illustrates the colocation
probabilities of users from Warsaw with users from other counties in the week ending on February 16th,
2021. The dot size and link transparency are proportional to the colocation probability between Warsaw
and the given county. See appendix for technical details, and appendix table 1b and figure 14b for summary
statistics of the colocation data.

6County (Powiat) is an administrative unit larger than a commune. There are 380 counties in Poland
7Smaller tiles than in the case of population data
8Formally, and ignoring the week index, let Xtir be the number of users from region r at tile t in the 5 minute time interval

i. Then let mrs to be the sum of meetings between pairs of individuals from region r and s across all tiles and time intervals,
that is mrs =

∑
ti XtirXtis. The colocation probability is then the ratio of all actual meetings and all potential meetings, that

is: Pr(Colocationrs) = mrs
2016nrns

, where nr is the number of users from region r and 2016 is the number of all five-minute

intervals in a week. See Iyer et al. [2020] for more details
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Figure 2: Colocation of users from Warsaw and other counties in the week ending on the 16th of February
2021

Note: The size of red dots and the transparency of curved links are proportional to the
colocation probabilities between users from Warsaw and a given county. Source: Own
elaboration based on FB data.

2.2 Spending on Tourism

We approximated the tourism spending by the usage of funds from the Bon Turystyczny (Touristic Voucher)
governmental program subsidizing travel. This voucher program was initiated in 2020 to revive the tourism
industry. Each family is entitled to one voucher (approximately $130) per child under 18 years old9, which can
be spent on anything related to tourism, such as transportation, accommodation, or organized activities. The
voucher can be spent on anything related to tourism, such as transportation, accommodation, or organized
activities. This amount is a not insignificant given that Poles spent, on average, $122 per trip in the first
quarter of 202110, although skiing usually required higher spending. The data provided by the government
specified the voucher amounts paid to businesses. In particular, it showed the total payments received by
businesses each week and each gmina (commune). A commune is the smallest administrative unit in Poland,
and they usually correspond to a town or a couple of villages. There are 2,477 communes in Poland with
a median population of 7,486. The commune of the business is the commune where the headquarter is

9The value of the voucher doubles for children with disabilities
10Information obtained from the Polish Ministry of Sport and Tourism through the FOIA request
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located. Data showed that the program was particularly beneficial for ski resorts. During the study period
of January to April 2021, 26% of all payments made with vouchers (approximately $5.5 million) were directed
to businesses located in 89 communes with ski facilities.

2.3 Health Outcomes

The Polish Ministry of Health provided the data on health outcomes. It contained weekly observations
at the commune level for the number of COVID-19 cases, deaths, tests taken, and people vaccinated with
two doses. Our data cover May 2020–April 2021 for cases and tests, while the remaining variables concern
January 2021–April 2021. During this period, Poland experienced its second significant wave of infections.
Figure 3 illustrates the evolution of the pandemic in Poland by showing the median, 10th, 25th, 75th and
90th quantiles of weekly cases per 10,000 inhabitants across the communes. As one can see, the number of
new infections varied considerably in the temporal and cross-sectional dimensions. Interestingly, the second
wave’s timing coincided with the reopening of hotels.

Figure 3: Quantiles of weekly cases per 10 000 inhabitants in Poland

Note: The lighter shaded area corresponds to the 10th and 90th quantiles. The darker
area corresponds to the 25th and 75th quantiles. The red line and points represent the
median. Source: Own elaboration based on the data from the Ministry of Health

3 Mobility and Spending Outcomes

This section contends that reopening hotels raised tourist spending in ski resorts and significantly increased
mobility, especially at long distances. A sharp influx of travelers to tourist areas raised the frequency of
meetings between inhabitants of tourist and non-tourist counties.
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3.1 Empirical Framework: the Impact of the Policy on Tourist Spending

We first investigated whether people responded to the policy by increasing their consumption of tourist
services in areas with ski resorts. We conducted an event study comparing spending from the Touristic
Voucher program in tourist vs. non-tourist areas. In particular, we grouped all communes by the number of
hotel beds per 100 inhabitants and the presence of ski facilities11. This strategy resulted in three categories
aiming to approximate tourist appeal: communes with fewer than four hotel beds per 100 (non-tourist),
communes with more than four hotel beds but no ski resort (tourist), and communes with more than
four hotel beds and a ski resort (very tourist). We chose four beds as it roughly corresponds to the 90th
percentile of the distribution of hotel beds per 100 inhabitants. Hotels and ski facilities could not operate
before February 12th, so the spending trends should be parallel across categories. Then we estimated the
following regression:

Spendingkw =
∑
c ∈ C

∑
W ∈ {{01/03 : 01/31},

{02/14 : 05/02}}

Tourismk
c I(w = W )βW

c + λk + γw + ϵkw
(1)

The event study in equation 1 analyzed the change in payments from the ”Touristic Voucher” program
in communes of category c ∈ C12 in week w compared to an analogous change in communes with fewer than
four hotel beds per 100. The baseline period was the week ending on February 7th, which was excluded
from time dummies. The outcome variable was the vouchers’ total value (USD) spent in businesses located
in commune k in week w. The dummy Tourismk

c took value 1 if the commune k belonged to the category c.
The parameter of interest was βW

c which measured the impact of the policy on spending in areas of type c
in week W compared to non-tourist areas. We expected the coefficients to be 0 before the policy and higher
in areas with ski resorts after the policy as these were more appealing during winter. We allowed for the
commune λl and week γw fixed effects. We clustered the standard errors at the commune level.

3.2 Hotels Reopening Led to Higher Consumption of Tourist Services at Ski
Resorts

The reopening of the tourism industry increased tourist spending, especially in the ski resort areas. Figure
4 displays βW

c coefficients. Note βW
c was 0 before the policy date (dashed line), confirming that trends

were parallel before the reopening. However, after February 12th, we found a dramatic rise in the payments
received in communes with ski facilities (right panel). The increase was smaller in tourist communes without
ski resorts (right panel). The effect of the policy at ski resorts peaked in the second week and reverted to 0
as hotels closed again at the end of March. Overall, the interaction of subsidies and the reopening of hotels
increased touristic consumption at ski resorts.

11Data on hotel beds come from the Polish Statistical Agency for the year 2019. Data for ski facilities came from scraping
the database of the website narty.pl. See figure 18 in the appendix for the spatial distribution of ski resorts

12Where C contains the two non-excluded categories C = {communes with more than four hotel beds but no ski resort,
communes with more than 4 hotel beds and a ski resort}
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Figure 4: Event study: Hotels and ski resorts reopening and touristic spending

Note: Lines and points correspond to the estimates of βW
c from equation 1. The excluded

category is Communes with fewer than 4 hotel beds per 100 inhabitants, and the excluded
date is the 7th of February.The panel on the left represents the estimates for tourist
communes without ski resorts, and the panel on the right shows estimates for the tourist
communes with ski resorts. The red shaded area plots 95% confidence bands, which
allows for clustering at the commune level. The green rectangle represents when the
hotels and ski resorts were open. Source: Own elaboration based on administrative
data.

Some caution, however, is required in interpreting this result. Firstly, estimates present the lower bound
on total spending as they account only for the payments with the vouchers. While we cannot track the
expenditures from other sources, the aggregate national spending on travel in the first quarter of 2021 was
50 times higher than the amount from the vouchers only13. Therefore, the reopening likely incentivized
spending among people not using the subsidy. Nonetheless, unsubsidized groups may have experienced a
different effect as they differed from the voucher holders in terms of age, income, and frequency of skiing,
and their travels are not subsidized.

Second, it is worth considering if the results are robust to weather variations related to climate change. For
example, warming temperatures may decrease snow coverage and make skiing less appealing. Nevertheless,
ski resorts are popular tourist destinations throughout the year, and larger ski lifts serve hikers in the warmer
months. Thus, we believe that climate variation would not fundamentally alter our results.

Third, our findings do not allow us to assess what would be the impact of tourism on spending in the pre-
COVID-19 period. On the one hand, domestic expenditures could be lower due to the lack of travel subsidies
and the ease of border crossing before the pandemic. On the other hand, they could be higher as potential
tourists did not experience adverse income shocks or face a risk of infection. Therefore, a pre-COVID effect
could vary in either direction.

While the interaction of vouchers and hotels reopening makes it difficult to generalize the effect on
spending, it also provides a unique setting to investigate the impact of tourism on infections. As both
policies are complementary, they likely produced a substantial spike in tourist movement, which we can
leverage to investigate its effect on public health.

3.3 Empirical Framework: The Impact of the Policy on Population Movements

Along with the increase in tourism spending, we expected a significant increase in tourist movement after
the policy. An upsurge in national railway and passenger car traffic provided suggestive evidence for such
movements (see figure 13b in the appendix). To investigate this formally, we used differential tourist accom-
modation capacity and proximity to ski resorts to conduct an event study evaluating whether the reopening

13The aggregate spending from vouchers in Q1 2021 was $17,359,888, while aggregate national spending on travels in the
same period was $877,385,506 according to the Ministry of Tourism
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of hotels increased the inflow to tourist locations. In particular, we analyzed whether there was a more
significant increase of users on tiles with many hotels after the policy’s implementation than on tiles with no
hotels. Furthermore, we stratified the analysis by whether the tiles were close to ski facilities. We hypoth-
esized that the policy induced a large influx of tourists to ski resorts, noting that places with many hotels
attracted more tourists due to their greater capacity. Moreover, stratifying the analysis by the proximity to
ski resorts helped to alleviate the concern that the number of hotels proxies high urbanization as ski resorts
are usually located within small towns.

To implement this strategy, we located all accommodations and ski facilities and assigned them to tiles.
We then calculated the number of hotels in each tile. We grouped tiles into five categories: 0 hotels, 1 hotel,
2 to 9 hotels, 10 to 19 hotels, and 20 or more hotels. Next, we defined tiles as in proximity to a ski resort if
they were within 25km of the closest ski lift in the mountains. Then we estimated the following regression
separately for the tiles in proximity and not in proximity to ski resorts:

log(population)jtp =
∑

h ∈ {{1}, {2 : 9}
{10 : 19}, {20+}}

∑
T ∈ {{01/06 : 02/03},

{02/05 : 03/31}}

HotelsjhI(t = T )βT
h + λjp +

∑
dw∈DW

αdw
i(j) + γtp + ϵjtp

(2)

The event study in equation 2 analyzes the change in the population on tiles with h hotels at date t
compared to an analogous change in tiles with 0 hotels. The baseline period was February 4th, which was
excluded from time dummies. The outcome variable was the natural logarithm of the population at tile j,
date t, and time window p. The dummy Hotelsjh takes value 1 if the tile j has a number of hotels in the
bin h. The parameter of interest was βT

h , and we expected it to be 0 before the policy ( February 12th),
and positive after the policy. Moreover, βT

h should increase with the number of hotels. The increase should
be considerably larger in proximity to ski resorts if the movements were tourism-related. We allowed for the
tile×time-window fixed effects λjp, weekday×county fixed effects αdw

i(j), and date×time-window fixed effects
γtp. We clustered the standard errors at the county level.

3.4 Hotels Reopening Led to an Increase in Tourist Area Mobility

The reopening of hotels increased the population present at ski resorts considerably. Figure 5 displays βT
h

coefficients. We see that βT
h was 0 before the policy date (dashed line), confirming that trends were parallel

before the reopening in all types of tiles. However, after February 12th, we see high growth in the number of
users in tiles with hotels, especially in the proximity to ski resorts (left panel). The growth is also higher for
tiles with more hotels. For tiles with more than 20 hotels and in proximity to ski resorts, we see about a 50%
increase in the population during weekends and a 30% increase during weekdays. The effects subside with
time as Poland entered its second wave of the pandemic. While there is a significant increase in population
at tiles with many hotels and not in proximity to ski resorts (right bottom panel), its magnitude is small.
We conclude that there was a large influx of tourists to ski resorts after the opening.
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Figure 5: Event study: Hotels and ski resorts reopening and Facebook users

Note: Lines and points correspond to the estimates of βT
h from equation 2. The excluded category is tiles with 0 hotels, and

the excluded date is the February 4th. The panel on the left represents the estimates for tiles in the proximity to ski resorts,
the panel on the right shows estimates for the remainder of the tiles. Estimates of βT

h for each bin h are plotted separately,
starting with the lowest bin h at the top and the highest bin h at the bottom. Blue points correspond to weekends and yellow
to weekdays. Red shaded area plots 95% confidence bands, which allows for clustering at the county level. The green rectangle
represents the time when the hotels and ski resorts were open. Source: Own elaboration based on Facebook data

3.5 Empirical Framework: The Impact of the Policy on the Frequency of Meet-
ings

In this section, we discuss whether the policy affected the frequency of meetings between users from different
counties. Such meetings are essential from an epidemiological perspective because they can transform local
outbreaks into a national wave. Our hypothesis was that the reopening policy made population flows at long
distances and flows from non-tourist to tourist counties more likely. To test this, we performed two analyses.
The first analysis investigated whether the frequency of long-distance meetings increased relative to short-
distance meetings after the policy was enacted. We classified each link into five distance bins based on the dis-
tance between centroids of the counties: d ∈ D = 0− 100km, 100− 200km, 200− 300km, 300− 400km, 400 + km.
Next, we regressed the log of colocation probabilities on the interaction of the week dummies with the distance
bins:

log(P (colocation))klw =
∑

W ∈ {{01/05 : 02/02},
{02/16 : 04/13}}

∑
d∈D

DistancedklI(w = W )βW
d

+ ϕkl + χw + vklw

(3)

Where log(P (colocation))klw is the log of the probability of colocation between users from county k and
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l in the week w. A dummy Distancedkl was equal to 1 if the distance between counties l and k was in the
bin d.

The bin with the shortest distance was excluded as a reference. The dummy I(w = W ) was equal to
one if the week of the observation corresponded to the week W . The excluded week was the last week
before the reopening, that is, the week of February 9th. We allowed for link ϕkl and week fixed effects
χw, and we clustered the standard errors at the link level. The parameter of interest was βW

d which was
a difference-in-differences estimator: the first difference measured the percentage change in the colocation
probabilities for counties at a distance d in the week w compared to the week of 02/09. The second differ-
ence took this change and compared it to an analogous change for counties at a distance of 0-100km. We
expected βW

d to be positive for weeks when the policy was in place as people started to travel long distances.

The second analysis tested the hypothesis that meetings between tourist and non-tourist counties in-
creased after the policy was implemented. We relied on the assumption that counties with extensive skiing
and accommodation capacities would have greater tourist appeal (see the derivations of the theoretical im-
pact of policy on colocation in the appendix). Therefore, we defined the exposure to tourists by using the
total length of skiing trails and the number of hotel beds in the county14. In particular, we first classified
counties as below (few hotels) or above (many hotels), the third quartile of the distribution of hotel beds.
Second, we classified counties with 0 skiing trails as 0 trials. Finally, for counties with some skiing trails,
we grouped them based on whether they were below (few trails) or above (many trails) the third quartile
of the distribution of the total length of skiing trails15. In this way, we obtained five possible exposure
statuses es ∈ ES={0 trails & few hotels beds, 0 trails & many hotel beds, Few trails & few hotel beds Few
trails & many hotel beds, Many trails & Many hotel beds} 16. See figure 19 for the spatial distribution of the
exposures.

We expected the probability of colocation between inhabitants of tourist and non-tourist regions to have
increased after the policy’s implementation. The most substantial effect should exist for pair of counties
with and without ski resorts. To measure such an effect, we conducted our analysis on the link level (links
between counties) by running the following regression:

log(P (collocation))klw =
∑

W ∈ {{01/05 : 02/02},
{02/16 : 04/13}}

∑
s∈ES

∑
q∈ES

Exposuresk × Exposureql I(w = W )βW
sq

+ δkl + γw + ϵklw

(4)

A dummy Exposuresk was equal to 1 if the county k belonged to the exposure category s and 0 otherwise.
The excluded combination of classes was the one between counties which both belong to 0 trails & few hotels
beds. Analogously to equation 3, we excluded the week of Febryary 9th, and we allowed for link δkl and
week fixed effects γw, and we clustered the standard errors at the link level. The parameter of interest βW

qs

estimated the percentage change in the colocation probabilities between users from counties of types s and q
in the week w compared to the week of February 9th and relative to an analogous change for users from two
different counties both belonging to the type 0 trails & few hotels beds. Note that the links were undirected,
hence we used βW

qs independently of which county was in q and which was in s. We expected βW
qs to be

positive after policy implementation for pairs s and q such that one had ski trails and hotels while the other
did not. Moreover, the effect should have grown in the difference between the counties’ tourist appeal and
thus should have seen the most prominent effect for pair 0 trails & few hotels beds and Many trails & Many
hotel beds.

14Data from the Polish Statistical Agency for the year 2019
15Among counties with any skiing trails
16All counties with long skiing trails have many hotels beds, hence exposure Few hotel beds & Many trails is missing
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3.6 Policy Increased Likelihood of Long-Distance Meetings and Those Between
Locals and Tourists

The frequency of long-distance meetings and meetings between non-tourist and tourist counties increased
after the reopening. Figure 6 shows the parameter of interest from the equation 3 and displays a well-defined
increase in colocations at long distances compared to counties within 100km after the policy was enacted.
Moreover, the increase was greater for distances above 200km, consistent with tourists going farther as they
can stay the night in a hotel. The parameter of interest decreased after the initial surge, which may be
related to the rising number of COVID cases in late March. Furthermore, figure 6 reveals a spike in the first
week of April, which likely corresponds to Easter festivities.

Figure 6: Event study: Hotels and ski resorts reopening and long-distance colocation

Note: Lines and points correspond to the estimates of βW
d from equation 3. The excluded category is Distance < 100km and

the excluded week is February 9th. Each panel represents estimates of βW
d for a different distance bin b starting with the

lowest distance on the left. The red shaded area plots 95% confidence bands, which allowed for clustering at the link level.
The green rectangle represents the time when the hotels and ski resorts were open. Additionally, an annotation was added to
mark the week of Easter. Source: Own elaboration based on Facebook data

Regarding equation 4, figure 7 shows increase colocation between tourists and locals. Each panel in figure
7 corresponds to estimates of parameters βW

qs for different s and q. The row label represents category s,
and the column label represents category q. For example, the top-left panel represents the change in the
colocation probabilities between counties with 0 trails & few hotels beds and with 0 trails & many hotels
beds. As expected, we did not see significant changes in the frequency of meetings between pairs of counties
that were either both tourist or both non-tourist. While the null effect among non-tourist counties was
accurately estimated, we obtained noisy estimates for links between counties that both had trails. This
was due to a lower number of tourist counties and fewer connections among them. Importantly, we saw a
significant increase in the probability of meetings between counties with 0 trails and counties with many
trails immediately after the reopening. The magnitude of this increase was approximately 50% for the week
following the reopening and stayed positive for the next three weeks.
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Figure 7: Event study: Hotels and ski resorts reopening and touristic colocation

Note: Lines and points correspond to the estimates of βW
sk from equation 4. The excluded category is one with both counties

belonging to 0 trails & few hotels beds and the excluded week is Februray 9th. Each panel represents estimates of βW
sk for

a different pair of s and k types. Note that the ordering of types does not matter because the links were symmetric. The
types are described in the strips on the left and on the bottom. For example, the bottom left panel represents βW

sk where one
county belongs to 0 trails & few hotels beds and the other to many trails & many hotels beds. The red shaded area plots 95%
confidence bands, which allows for clustering at the link level. The green rectangle represents the time when the hotels and
ski resorts were open. Additionally, we add an annotation to mark the week of easter. Source: Own elaboration based on
Facebook data

We conclude that the policy increased the frequency of long-distance meetings and that of meetings
related to tourism. As such, it could have had a significant impact on COVID-19 outcomes.

4 COVID-19 Outcomes

4.1 Conceptual Framework

Since the policy encouraged gatherings and travel, it should have impacted the number of infections due to an
increase in the number of contacts between individuals. However, the communes should have been affected
differently depending on their participation in the tourism industry. We exploit this exposure heterogeneity
when designing our identification strategy.

Conceptually, we can distinguish between three levels of the exposure due to the policy. First, communes
hosting ski facilities (type 1) were highly exposed. They experienced a large influx of tourists and increased
local interactions due to amplified economic activity. We expected new cases arising among locals who come
in contact with a higher number of individuals. Second, the policy directly affected communes sending
tourists to ski resorts (type 2). Tourists came into contact with locals and other tourists while staying at
the resorts; consequently they were at a higher risk of getting infected. Third, some communes did not send
tourists to ski resorts after hotels reopened (type 3). They were the least exposed to the policy as their
contact patterns have not changed.

While the contact patterns of type 3 communes were not affected, these communes could still experience
treatment effect in terms of new infection. Policy-induced cases in communes of type 1 and 2 could have
produced secondary infections that spread through the existing networks (Chang et al. [2021],Kuchler et al.
[2022],Fritz and Kauermann [2021]). They could flow to communes not sending tourists to ski resorts through
the connections pre-existing the policy. Note that these additional secondary cases would not have happened
in the absence of the policy; hence they were part of the treatment effect. Although every commune could
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be potentially affected by the policy, we expect that the timing of the treatment effect differs by type (Shtele
et al. [2022], Thomas et al. [2020]). In particular, policy induced infections should first appear in communes
hosting ski resorts or directly sending tourists, and only later in communes not sending tourists.

Motivated by this reasoning, our identification strategy leveraged differential exposure to the policy by
type of the commune and time after the opening. In particular, it relied on comparing the dynamic of
infections in communes directly exposed to the policy (type 1 and type 2) to the analogous dynamic in the
communes not sending tourists to ski resorts.

4.2 Empirical framework

Translating this conceptual framework to an empirical one posed three main challenges: We needed to identify
communes sending tourists, adjust for differences in the pre-policy pandemic outcomes across communes,
and find a valid counterfactual in the realm of a national policy.

4.2.1 Tourists’ Origin Communes

We used colocation data to identify communes sending tourists to ski resorts. In particular, we summed all
meetings between individuals from county i and any county containing a ski resort 17 during the first three
weeks of the policy. Mathematically, the strength of connections, which we call exposure is:

exposurei =

∑
w∈{w∗,w∗+1,w∗+2}

∑
j∈ski resort Meetingsijw

Ni

Where Ni is the number of FB users in county i and ski resort is the set of counties with ski resorts. Note
that the connection measure is at a lower geographic granularity (county) than the outcome (commune).
Thus, we assume that all communes in a county had the same exposure. We divide communes into five
categories which corresponded to types. Communes with ski resorts are classified as Ski resort commune.
Communes without ski facilities but in the counties with ski resorts are classified as Ski resort county18. The
rest of the communes are classified according to the tertiles of their county’s exposure (similarly to Dave
et al. [2021b]). We assume that the counties in the first tertile did not send any tourists because they had
fewest interactions with inhabitants of ski resorts during the policy. We further assumed that counties in the
third tertile sent more tourists than counties in the second tertile. The map on figure 8 shows the spatial
distribution of the treatments 19.

17We excluded ski facilities not located in the mountains
18This distinction is necessary because we do not know connections within the county
19Note that the connections are at the county levels, but the outcomes are at the commune level. Hence, communes in the

same counties will have the same exposure
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Figure 8: Exposure to ski resorts

Note: Each color corresponds to a different exposure category. Communes within the same county belong to the same
exposure unless the county contains a ski resort. Communes containing ski facilities are in the category Ski resort commune
and communes without ski facilities but in counties containing ski resort communes are in the category Ski resort county.
Source: Own elaboration

For the preliminary empirical evidence on the impact of the policy, we compare new cases in communes
with different treatments. Figure 9a plots the average number of new cases per 10 000 inhabitants in
communes by their exposure to the policy. First, one notes that the pre-policy infection trends differ
between the treatment arms. Second, we do not see a significant difference in the number of new infections
right after the enacted policy (first dotted line). However, such a simple comparison may be insufficient to
uncover the impact of the policy. The diffusion is affected not only by the number of contacts but also by
the number of previous infections and susceptible individuals. Different treatments seem indeed to be at a
different stage of the pandemic before the policy, as evidenced in figure 9a. This by itself is enough to render
a simple comparison unreliable.

4.2.2 Balancing Communes by Pre-Policy Outcomes

To analyze the policy, we need to compare locations at a similar pandemic stage before the policy. As
SIRD has Markovian properties, the current pandemic situation should depend only on the indices in the
previous period. The variables representing number of infections, share of those susceptible, and number of
infections among connected units in the current period act as sufficient statistics for the outcome in the next
period. Consequently, communes with similar pre-pandemic outcomes and characteristics should evolve in
the same way in the absence of the policy. Therefore, our analysis conditions on a set of pre-policy variables
Fk,w∗−1 = {Xk,w∗−1, Zk}. In particular, Xk,w∗−1 represents pandemic outcomes in the last period before
the policy. It includes the number of cases, deaths, and tests per 10 000, their growth rates, and their
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cumulative numbers since the beginning of the pandemic to proxy for share susceptible20. It also contains
the weighted sum of cases among neighbors where the weights correspond to the number of commuters
per capita. Moreover, Xk,w∗−1 includes the squares and interactions of all these variables. The controls
Zk represent observed location-specific characteristics that may influence the diffusion. In particular, Zk

includes population, population density, the type of the commune (urban or rural), unemployment rate at
the end of 2020, the number of sport objects per capita (swimming pools, stadia, courts), and the number
of theatres and cinemas per capita. The remaining analysis relies on the assumption that in the absence of
the policy and conditional on these variables, the potential outcomes would evolve in the same way across
all the types:

Assumption 1 -Ignorability : Y (0)k,w≥w∗ ⊥⊥ Treatmenttpk |Xk,w∗−1, Zk

for tp ∈ {ski resort, sending tourists,not sending tourists}

Figure 9b plots the average number of new cases by type in the sample matched on the conditioning
variables. We noticed a considerable improvement in the similarity of the pre-policy outcomes, suggesting
that the matching was successful. However, the outcomes diverge in the weeks after the opening. In
particular, the number of cases was higher in the first weeks after the reopening in locations with ski resorts
and communes strongly connected to ski resorts.

Figure 9: Covid cases in ski resorts

(a) Covid cases: full sample

Note: The averages were calculated on the full sample.
Dotted lines represent the reopening and closure of ho-
tels. The date corresponds to the last day of the week.
Source: Own elaboration based on the Ministry of Health
Data

(b) Covid cases: matched sample

Note: The averages were calculated on the matched sam-
ple. Each treated unit was matched with one unit from
the first tertile of connection. Units were matched by
the distance in the propensity scores computed based on
the conditioning variables. Dotted lines represent the re-
opening and closure of hotels. The date correspond to
the last day of the week. Source: Own elaboration based
on the Ministry of Health Data

4.2.3 Identifying control communes

The policy was nationwide; however, the exposure to the policy differed between the communes. We argue
that the least exposed communes can act as controls to identify the on impact effect of the policy. Since the
level of interactions did not change in communes not sending tourists, their infection dynamic was not affected
at the onset of hotels reopening. Consequently, they could serve as controls in the initial period of the new
policy. Thus, we could identify the on impact treatment effect in communes with ski resorts and analogously
in communes sending tourists. The identification was more challenging in future periods. As time passed,
infections induced by the policy flowed through the existing network of connections. Due to these spillovers,
the treatment effect was no longer null in communes not sending tourists in later periods. In particular,

20Since the beginning of 2021 in case of deaths, as the number of deaths is only available for 2021
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they were affected by higher levels of infections in communes to which they were connected. Hence, the
comparison was biased in later periods, and the bias was more significant if control communes were well
connected and experienced large spillovers. However, the treatment effect in communes not sending tourists
was presumably non-negative as the policy should have increased the number of new cases. Therefore, we
could identify lower bounds on the treatment effect in the remaining communes.

4.2.4 Estimation

To estimate the effects, we turned to the unconfoundedness approach suggested by Callaway and Li [2021]. It
has been shown that fixed effects estimation is unlikely to produce reliable results if outcomes are generated
by a non-linear model (Gauthier [2021], Callaway and Li [2021]), and the infections are likely a product
of such a non-linear model21 (Keeling and Eames [2005], Brauer [2017], Caccavo [2020]). This issue occurs
because the treated units could be at a different pandemic stage than the control units. For example, suppose
that the treated units experienced their first case earlier than the control units. Then, their outcomes would
not evolve parallel to the outcomes in the control areas, even without the policy. Figure 10 illustrates this
problem. It plots the results of a simple simulation of the Susceptible-Infected-Recovered-Deceased model in
two identical areas except for the timing of their first case. The area represented with the red curve started
the pandemic earlier. Dotted lines show linear trends in the number of cases between two points in time.
Despite identical parameters, the trends are not parallel because these areas are at different pandemic stages.
Therefore, differencing trends would introduce a bias rather than remove it.

Figure 10: Non linearities implied by SIRD model

Note: figure plots the results of a simulation of SIRD model in two areas. The parameters
are identical in both cases, however the timing of the first case is different. The area
represented by red curve had the first case earlier than the area represented by the blue
curve. Dotted lines measure linear trends in cases between two points in time. Despite
identical parameters, areas experience non-parallel trends

The unconfoundedness approach alleviated the above issue in two ways. First, it did not rely on fixed
effects. Second, it ensured that the control units were at a similar pandemic stage before the policy. This is
achieved by conditioning on the pre-treatment covariates related to the pandemic. Thus, this approach was
compatible with a case in which pandemic-related parameters varied over time and with commune-specific
characteristics. It was, however, not compatible with a general unobserved heterogeneity in parameters

21We perform traditional event studies on the full (figure 17a) and matched samples (figure 17b), see the results in the
appendix
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by location. Hence, the estimation presented below was valid under the assumption that the parameters
changed across locations only due to the variation in the conditioning controls Fk,w∗−1.

The unconfoundedness approach computed a weighted difference of outcomes in treated communes versus
control communes with similar pre-treatment characteristics to the treated units. The larger the similarity,
the higher the weight for the control unit. In particular, denote the pre-treatment characteristics as Fk,w∗−1 =
{Xk,w∗−1, Zk} and Cw,k as the number of new cases in week w and commune k. Following the notation from
Callaway and Li [2021], we estimate:

ATT c
w = E[w(treatmentck, Fk,w∗−1)(Cw,k −mC

0,w(Fk,w∗−1) (5)

where ATT c
w corresponded to the average effect on the treated by treatment c, and the weights correspond

to:

w(treatmentck, Fk,w∗−1) =
treatmentck

E[treatmentck]
−

p(k,Fw∗−1)
1−p(k,Fw∗−1)

(1− treatmentck)[
p(Fk,w∗−1)

1−p(Fk,w∗−1)
(1− treatmentck)

]
Finally, the untreated potential outcomes correspond to

mC
0,w(Fw∗−1) = E[Cw|Fk,w∗−1, treatmentck = 0]

.
The untreated potential outcome of a treated unit k in a week w came from outcomes of untreated

units similar to k in week w. Their expectation was unbiased for the untreated potential outcome under
assumption 1. Concretely, we implemented this method by estimating propensity scores p(Fk,w∗−1) with
logit and outcome regression mC

0,w(Fk,w∗−1) with OLS. The method was double robust because it was robust
to the misspecification in either propensity scores or counterfactual regression of potential outcomes. The
method assumed that the pandemic trajectory would be similar in the treatment and control groups after
conditioning on the Fk,w∗−1. We argue for the validity of this assumption in section 4.2.5. Note that we
estimate four effects: one for each treatment versus the control group of communes in the first tertile of
exposure. Thus, we estimated the effect in four samples where each sample contained units from the control
and one of four treatments. Figure 11 plots the results of the estimation together with 95% confidence bands
calculated with multiplier bootstrap.
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Figure 11: Event Study: Covid-19 and tourism opening

Note: The estimates come from the unconfoundedness approach by Callaway and Li
[2021]. Red points correspond to the estimates for pre-treatment periods. The reference
point in a pre-treatment period t is the previous period t−1. Blue points correspond to the
estimates for post-treatment periods. The post-treatment periods’ propensity scores and
outcome regression were based on the last period before the policy w ∗−1. Control units
are communes in the first tertile of exposure. The shaded area represents simultaneous
95% confidence bands with clustering at the commune level. The date corresponds to the
last day of the week.

The results are consistent with the hypothesis that the policy precipitated the wave of infection and that
tourists brought the disease back to their home counties. Communes in counties with ski resorts experienced
more infections after the reopening. They had about five additional infections per 10,000 in the third week
after the reopening compared to the control. The effect was statistically and economically significant as it
represented a 70% increase in the pre-policy average in these communes. We interpreted this as the on impact
treatment effect. It is not apparent why communes without ski facilities but in counties with ski resorts
experienced impact equivalent to ski resort communes. There may have been many interactions between
the communes with ski resorts and without ski resorts in the same county. For instance, people may have
gone skiing or to work in nearby ski resorts. Figure 20 in the appendix shows that commuting to ski resort
communes was stronger than across no ski-resort communes, but the magnitude of commutes was not large.

The early increase in cases was absent in communes in the second and the third tertile of exposure.
However, communes with medium and strong connections saw an increase in infections compared to the
control starting in the fourth week after the reopening. This could have been the result of secondary
infections from tourists bringing the disease back home and spillovers from other communes. Moreover, we
saw a monotonicity of this effect in the strength of connection: communes in the third tertile had a higher
increase in cases than communes in the second tertile. While this was consistent with the story of tourists
contributing to the diffusion of the virus, these differences were not statistically significant.

The above analysis provides suggestive evidence that the reopening of hotels contributed to the diffusion
of COVID-19 through tourist gatherings and travel. In particular, the wave of infections arrived earlier in
the counties with ski resorts. Moreover, there were more infections in counties with ski resorts and counties
strongly connected to ski resorts than counties weakly connected to ski resorts. Note, however, that this
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exercise does not allow us to conclude whether the reopening of tourism caused or did not cause the second
wave of the pandemic in Poland. While we found differential trends in infections by exposure to tourism, all
units would have been affected by the policy in the medium or long term. Therefore, there was no plausible
counterfactual which would allow for the evaluation of what would happen in the absence of the policy in
the medium or long term.

4.2.5 Robustness

The The unconfoundedness method developed by Callaway and Li [2021] relies on the assumption that
applying the propensity score weights and the regression to control units can predict the counterfactual
outcomes for treated units. In other words, control-based predictions should replicate the potential trajectory
of infections in the treated communes that would have happened in the absence of the policy. While it is
impossible to test the counterfactual’s performance during the intervention, one can look at periods before
the policy’s enactment. In particular, conditional on Fk,w∗−1, there should be no difference in the outcomes
between treated and control communes before February 12th.

For the first check, we extended the study period until November 2020 to examine the pre-policy differ-
ences. We compared the counterfactual prediction22 and the treated outcomes before the implementation
date and we found no considerable differences as shown in figure 22 in the appendix.

As a second check, we performed a placebo exercise, setting the treatment timing to start a month
before the actual implementation date. We expected no differences between the ”treated” trajectory and
the control-based predictions as the actual policy had yet not started 23. Figure 23 confirms this intuition
showing no significant differences between the treated and control communes after the placebo date. While
there were some deviations from 0, they were small and opposite to the policy effect. Therefore, we believe
the method provided a reasonable counterfactual trajectory for the treated communes.

In addition to reopening of hotels and ski resorts, the government changed some other restrictions during
the study period. We took steps to ensure that these additional changes were not driving our results. Firstly,
simultaneously to lifting the closure of hotels, Polish authorities allowed theatres, cinemas, swimming pools,
and outdoor sports venues to resume their activity. For this reason, the main specification included the per
capita number of theatres, cinemas, and sports venues 24 as conditioning variables. Consequently, treatments
and control groups should be balanced with respect to the availability of these venues; thus, this should not
affect their infection dynamics deferentially. Second, the Polish government introduced stricter measures
in four regions 25: on February 27th in Warminsko-Mazurskie, and then on March 15th in Pomorskie,
Mazowsze, and Lubuskie. The measures included closing hotels, theatres, sports venues, and malls, and
instituting remote learning for primary schools. These measures covered the entire country starting on
March 20th. Note that none of these regions contained ski resorts. As a robustness check, we repeated our
analysis but excluded these four regions from the sample. The results (presented in the appendix in the figure
21) were qualitatively unchanged, albeit less precise. Finally, some nationwide changes were implemented,
such as mandatory quarantine for certain international travelers and the use of mandatory medical grade
facemasks (as opposed to bandanas). As these measures were national, we did not expect they would affect
our treatment and control groups differently.

5 Cost-Benefit Analysis

While reopening the hotels and ski lifts revived the tourism industry, it also produced public health costs.
We evaluate the policy by quantifying its costs and contend that they were larger than the benefits.

We assumed that the primary costs stemmed from increased usage of healthcare resources and deaths as
in equation 6:

22Note that the pre-treatment counterfactual predictions are based on the preceding period, while post-treatment predictions
are based on the last period before the policy, which results in a longer prediction horizon

23The main difference with the previous check is a longer prediction horizon for the counterfactual outcomes trajectory
24As reported by the Central Statistical Office.
25There are in total 16 regions in Poland.
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Costs = Increase in Healthcare Costs + V SL ∗Number of Additional Lives Lost (6)

where VSL stands for the Value of Statistical Life that translates death into financial terms.
Consider first the hospital costs. Accounting for the probability of hospitalization from COVID-19, its

length, and fees in Poland (based on Orlewska et al. [2021]), each case had an expected healthcare expenditure
of $275. Next, consider the cost of Covid related deaths. Computing the cost of lives lost requires identifying
fatality likelihood and assigning a value to each life. The fatality rate of COVID-19 in the period of interest
in Poland was 2.7% 26. We used the information provided in Robinson et al. [2021] to monetize the value
of life. In particular, they combined the constant value per statistical life-year (VSLY) and age distribution
among COVID-19 deaths to calculate the cost of years lost due to a COVID infection. They assigned $4.47
million per life lost to COVID, which results in an expected death cost of $120,690 per infection. We chose
this measure for two reasons. First, COVID-19 deaths were concentrated among the elderly, and the VSLY
measure accounted for their older age. Second, this technique gave the lowest estimate among other methods
proposed by Robinson et al. (2021), and therefore helped construct a lower bound on costs. Summing up
the healthcare expenditures and the value of life lost, each case was associated with an expected cost of
$120,965.

The policy caused 134,886 additional infections throughout the country. We obtained this number by
summing the estimated treatment effect across populations of all affected areas in the periods after the
implementation. Given the 2.7% fatality rate, we calculated 3,642 deaths were due to the reopening. The
policy’s total cost was the product of infections times their expected cost, which was $16.316 billion.

We assumed that benefit of the policy was its contribution to the GDP through an increase in tourism-
related activity.

Benefits = Increase in the Consumption of Tourism Related Services (7)

Estimating the benefits is more challenging because we only have granular data on spending from the
vouchers. While vouchers are just a government transfer, they might had a multiplier effect: people may
dedicate additional spending on items not covered by the vouchers. Furthermore, people not qualifying for
vouchers could also increase their touristic consumption. Nevertheless, we could identify the upper bound
of the policy’s contribution to the GDP. According to the Polish Ministry of Sport and Tourism, tourist
expenditures in the first quarter of 2021 totaled $0.877 billion. This is an upper bound because likely only
part of this amount was due to the policy.

Costs and benefits are schematically demonstrated on the figure 12. The X-asis represents VSL. We
present costs as a function of the VSL (red line representing equation 6), so the reader can evaluate the
policy for a range of plausible VSLs. The grey dashed vertical line represents the VSL estimate from
Robinson et al. [2021] and the black dashed horizontal line shows the corresponding lower bound of the
cost ($16.316 billion). It is considerably above the green dashed horizontal line representing the estimated
upper bound on the benefits ($0.877 billions). Even if all this spending stemmed from the policy, it would
still be just over one-twentieth of the lower bound of the cost. Thus, we determined that the policy’s cost
vastly surpassed its benefits. Only at the VSL equal to $0.23 mil. would the policy stop being harmful.
Nonetheless, such low estimate is below any value of life considered in the literature.

26Calculated as the ratio of deaths to cases lagged by two weeks
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Figure 12: Cost-Benefit Analysis as a Function of VSL

0
V SL
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Costs

$4.47mil.
Robinson et al. [2021]
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0.877
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Note: The X-axis represents the Value of Statistical Life (VSL). The red line corresponds

to the cost of the policy as a function of the VSL. As VSL increases, the cost of the policy

goes up. The grey vertical line points to the VSL from from Robinson et al. [2021] and the

black horizontal line indicates the corresponding cost. The green horizontal line shows

the upper bound on the benefit of the policy. Finally, the blue line shows the maximum

value of VSL that does not make the policy harmful (break-even VSL).

The policy benefited only tourists coming to the ski resorts. By the revealed preferences, we conclude
that they have enjoyed a positive surplus because they chose to go skiing despite the risk of infections. On
the other hand, people outside ski resorts who are not tourists were worse off because they experienced
negative externalities of the policy without any benefits. A priori, the results for the ski resorts’ inhabitants
are ambiguous. From our results it is clear that they did not benefit from the policy. It caused 13,448
new cases in communes with ski facilities which led to a cost of $1.626 billion. This number is still higher
than the upper bound on the benefits. The costs would surpass policy’s benefits as long as the number of
produced infections exceeded 7250, or alternatively as long as there were more than 197 deaths (keeping the
VSL constant). Note that a wider access to vaccinations and treatments could potentially make the policy
beneficial. However, at the time of the opening only 1.4% of Poles were fully vaccinated.

Tourism during the pandemic a was risky behavior. It exposed tourists to the virus and subsequently
contributed to a broader diffusion of cases among the general population. This negative externality produced
costs that vastly outsized the benefits of hotels reopening. Even the ski resorts were worse off, despite the
policy’s intent. The only beneficiaries were tourists, particularly those with children, who could enjoy
subsidized travel.

6 Conclusion

Tourism plays a vital role in providing income for many local economies. However, while vital for economic
reasons, it also encourages long-distance travel and gatherings. Moreover, tourist services often require risky
in-person interactions. These features make tourism a transmission vector for various infectious diseases.
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We hope that our analysis will provide some guidance for policymakers struggling to balance the trade-off
between economic and public health goals related to reopening the tourism industry.

In this paper, we investigated how the reopening of hotels and ski facilities impacted tourist consumption,
mobility, and COVID-19 outcomes. These reopenings were followed by large movements of tourists to
locations with ski facilities. Areas with many hotels near the ski trails experienced an exceptionally high
influx of visitors and spending. Travel often originated from distant locations, so the probability of meetings
between individuals residing far from each other increased after the policy. Additionally, there had been an
increase in meetings between pairs of individuals such that one person lived in a tourist location and one in
a non-tourist location. These observations point out the strong impact of the reopening on mobility.

Travelers have a high potential to carry disease between distant locations. This potential is dangerously
elevated when they also participate in gatherings. Visitors of ski resorts could only gather in their hotel
rooms and on trails as the restaurants were closed. Nonetheless, we presented suggestive evidence that they
impacted the COVID-19 trajectory. We showed that counties with ski facilities were correlated with an
increase in infections after the policy. Moreover, counties with frequent meetings with ski resorts during the
reopening had more infections than counties with few such meetings.

We believe our results can be extrapolated to other settings involving mass tourism. We think that
travel and gatherings are the main factors driving additional infections related to tourism reopening. As
long as these two elements are present, one may expect an increase in the number of cases, although of
different magnitude depending on the circumstances. While the effects may be more substantial during
winter because people spend more time indoors, there is still a considerable amount of close interactions
in tourist activities during other seasons. For instance, travelers still share public means of transportation,
and locals engage in repeated interactions with tourists when providing them services; thus, additional
opportunities for transmission still arise.

Our study shows that engaging in tourist activity can generate negative externalities as it contributes to
spreading infections. Hence, it might be reasonable to impose additional costs, such as post-travel quarantine,
for people involved in tourism.

We note that the policy was enacted before the full distribution of COVID-19 vaccines. These could
potentially mitigate the impact of tourism on COVID-19. Nonetheless, long-distance travelers have a high
potential to carry novel variants to new locations. Future research could explore whether tourism activity is
associated with a faster arrival of new variants.
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7 Appendix

Figure 13: National traffic

(a) Average Weekly Car Traffic

Note: Figure shows average weekly number of passenger
cars passing through traffic control points. There are 35
traffic control points equipped with high accuracy cam-
eras distributed throughout the main Polish roads moni-
toring constantly. For visualization purposes, each point
is assigned to the last day of its week (Sunday). Dotted
lines represent the start and the end of the hotels open-
ing. Source: Own elaboration based on the data from
General Directorate of Roads and Motorways

(b) Monthly Number of Railway Passengers

Note: Figure shows the number of passengers transported
nationwide by railway in each month. For visualization
purposes, each point is assigned to the 15th day of its
month. Dotted lines represent the start and the end of
the hotels opening. Source: Own elaboration based on
data from the Railway Transportation Authority

Table 1: Summary statistics

(a) Population data

Number of unique tiles 34592
Number of tiles with any hotels 4203
Number of tiles of in proximity to ski resorts 3316
Minimum number of users on tile 10
Maximum number of users on tile 8693
Average number of users per tile 01:00-09:00 70
Average number of users per tile 09:00-17:00 81
Average number of users per tile 17:00-01:00 78
Note: Each observation counts the number of FB users
on a tile in an 8-hour window. Data is omitted for
privacy reasons if there are fewer than 10 users. If a
user was on several tiles during the 8-hour period, they
are assigned to the tile from which they were logging the
most often (modal tile). The period covered is January
6th 2021-March 31st 2021 Source: Facebook Data for
Good

(b) Colocation data

Number of unique links 68820
Average number of users
with a consistent home per county 768
Average colocation probability 2.84 ∗ 10−6

Minimum colocation probability 9.89 ∗ 10−11

Maximum colocation probability 0.00156
Note: Each observation corresponds to the probabil-
ity that two randomly drawn users from two chosen
counties meet in a randomly drawn 5-minute inter-
val in a given week. A meeting is defined as being
present on the same tile (0.6km × 0.6km) during a 5-
minute interval. A user’s home county is defined as
one where she/he spent at least 6 nights in 10 days in-
tervals around the date considered. User is discarded
from computations if there is no consistent night loca-
tion. Data is omitted for privacy reasons if there are
fewer than 10 users. The period considered begins on
the third week of January (with the last day 01-09-
2021) and ends with the second week of April (with the
last day 04-13-2021). Source: Facebook Data for Good
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Figure 14: Data summary statistics

(a) Quantiles of FB tile population

Note: The lighter shaded area corresponds to the 10th

and 90th quantiles of the population on tiles in a given
8 hour period. The darker area corresponds to the 25th

and 75th quantiles. The red line represents the median.
White breaks show missing data. The X-axis shows time
which comprises the date and the 8-hour window. Source:
Own elaboration based on Facebook data

(b) Quantiles of colocation probabilities

Note: The lighter shaded area corresponds to the 10th

and 90th quantiles of colocation probability in a given
week. The darker area corresponds to the 25th and 75th

quantiles. The red line represents the median. The X-
axis shows the last day of the week. Source: Own elabo-
ration based on Facebook data

Facebook data construction and spatial-temporal trends

Facebook geolocation data comes from users who have a Facebook app installed on their phones, and their
location history is turned on. Their spatio-temporal records are used to calculate various measures, including
Population and Colocation datasets.

Population

Population measures the number of users at a location A in a time-window t. It is computed in the following
way.

Assignment of a user to location Map of a country is divided into 3km x 3km tiles. Each 24h is split
into three time-periods with breaks 00:00, 08:00, and 16:00 UTC. User is assigned to tile A during time
window t if they were pinging from a location on tile A in the time window t. If the user pinged from more
than one tile during the time window, they are assigned to their most frequent tile.

Aggregation The population at time window t and at the tile A is the number of users who logged from
A in time window t.

Privacy concerns

For privacy reasons, FB does not show data based on fewer than ten users. Given a small size of tiles, there
may be many with fewer than 10 users. This is especially true for areas without towns or villages. Mobility
in such sparsely populated places may be difficult to estimate. Nonetheless, it is easy to identify when data
is missing due to few users present which alleviates the problem.

Spatial-temporal trends Figure 15a shows trends in the daily number of users present in the Population
dataset during the study period. The number is relatively stable at about 1 900 000, constituting about
5% of the Polish population. Weekends usually see fewer users than weekdays. There were five days in
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late January when the number of users was undercounted due to technical difficulties. Nonetheless, these
dates are considerably before the policy and do not threaten our strategy. The map on the figure 16a shows
the average baseline spatial distribution of the users. The baseline number of users was calculated over 90
days before the data was launched (April 2020). Data relatively well reflects the geographical structure of
the Polish population. The tiles with the highest number of users correspond to Poland’s large population
centers. There are some tiles without enough users to cross privacy threshold in northern Poland which
correspond to sparsely populated areas27.

Colocation

Colocation measures the probability that two randomly chosen users from county r and s were within the
same location. It is constructed in the following process.

Assignment of home counties to users. First, a map is divided into administrative units (counties in
the case of Poland). Next, each user is assigned a home county based on their nighttime location. Only
users who pinged at least three times for each date are counted. The modal location between 8 pm and 6
am is then registered as the user’s nighttime location. User is assigned a home in county r if they spent at
least 6 out of 10 nights in county r. Let nr be the number of all users assigned home in county r.

Intersecting users trajectories The goal is to check whether users were at the same place simultaneously.
Only users who have location updates sufficiently often are taken into account 28. A week is divided into 5
minutes intervals, and the map is divided into small 0.6km x 0.6km tiles29. Two users met or co-located if
their application pinged from the same tile within a 5-minute interval.

Computing colocation measure Let XtAr be the number of users assigned to home county r who pinged
on tile A in the 5 minute time interval t. Similarly, let XtAs be the analogous number of users assigned to
home county s. Then, the number of collocations produced on tile A at time t between users from counties
r and s is the product XtArXtAs. Data is aggregated across all tiles on the map and across all 5 minutes
intervals in a week w to compute the number of colocations in the week w: mrs,w =

∑
tA XtArXtAs. The

colocation probability is then the ratio of all actual meetings and all potential meetings in that week, that
is: Pr(Colocationrs,w) = mrs

2016nrns
, where 2016 is the number of all five-minute intervals in a week. The

procedure is then repeated weekly.

Spatial-temporal trends Figure 15b shows the total number of weekly users (with complete trajectories)
available to calculate colocation probabilities. The number varies between 230 000 and 260 000. It is
considerably smaller than the Population dataset. This is expected as the requirements to include someone
in colocation data are more stringent than for the population data (consistent home, relatively complete
trajectories). There is a very slight downward trend during the study period. Map 16b illustrates the
average share of county population used to calculate colocation probabilities. These shares are usually
between 0.25% and 1% of the total county population. A clear trend arises where a higher share of the
population is available in western counties. This follows approximately economic patterns. The divide
seems, however, orthogonal to the location of ski resorts.

Usage Predictors

We check whether the main demographic and economic variables correlate with the population share using
Facebook geolocation. We pull a set of characteristics at the county level from the Polish Statistical Office
for the year 2000. The variables are summarized in table 2. Next, we regress the average share of the

27Note that we cannot calculate penetration rate as we do not know true population at a tile level
28See Iyer et al. [2020] for technical details
29Note that these are smaller tiles compared to population dataset
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Figure 15: Temporal trends in Facebook base

(a) Population data

Note: Dots represent the daily number of FB users
present in the Population dataset in Poland. Number
of users on a given date is an average across three time
windows of that day. Vertical dotted lines show the tim-
ing of the policy. Note that there were technical issues
with data generation on five dates: January 17,18,23,24,
and 31.

(b) Colocation data

Note: Dots represent the number of FB users in each
weak whose data were used to calculate colocation prob-
abilities in Poland. Vertical dotted lines show the timing
of the policy.

Figure 16: Spatial trends in Facebook base

(a) Population data

Note: Map shows the average baseline number of FB
users on each tile. The baseline is calculated as the mean
number of users on a given day-of-the-week and time-
window combination across 90 days prior to April 2020
(before pandemic). The map takes average across all day
of the weeks and time windows. Grey areas have no data
available. The color becomes lighter as log(Population)
increases.

(b) Colocation data

Note: Map shows the average share of county population
used to calculate colocation probabilities. The average
share in county i is calculated as the mean number of
users with home at county i taken across all weeks di-
vided by the total population in this county. The shares
are divided into 6 quantiles with dark blue being highest
shares and light yellow being lowest shares. White color
correspond to no data.
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population feeding colocation data (pre-policy) on the county’s characteristics. The results are presented in
the table 3.

Results suggest that counties with high Facebook geolocation usage are younger, more female and more
urban. Moreover, they tend to do better economically as evidenced by the negative coefficient on the share
unemployed. On the other hand, they seem to have slightly worse infrastructure in terms of access to
healthcare, roads density, and cinemas. Facebook users with geolocation seems to also be more prevalent
in counties with more hotel beds. Hence our estimates may put more weight on the movements in these
populations. Note, however, that these patterns do not introduce bias in the strategy, as that would require
interaction between users’ characteristics and the policy timing.

Table 2: Demographic and Infrastructure Variables

Statistic Mean St. Dev. Min Max

Share in colocation data 0.006 0.002 0.003 0.024
Population 100,920.100 120,344.900 19,689 1,794,166
Population per 1km2 362.398 647.498 19 3,690
Share male 0.488 0.009 0.456 0.510
Share age≤14 0.152 0.016 0.110 0.225
Share age≥65 0.182 0.023 0.118 0.284
Share living in urban areas 0.503 0.272 0.000 1.000
Share of university students in the population 0.011 0.031 0.000 0.197
Share unemployed 0.052 0.022 0.016 0.145
Average monthly salary 4,772.427 582.086 3,872.060 8,920.410
Roads per capita 0.009 0.005 0.001 0.033
Doctors per capita 0.002 0.001 0.0001 0.008
Hotel beds per capita 0.025 0.061 0.0002 0.419
Libraries per capita 0.0003 0.0001 0.00003 0.001
Cinema seats per capita 0.005 0.006 0.000 0.033

Impact of opening on colocation

Suppose that the number of tourists who would come from a county s to a county r is proportional to the
length of the trails in the county r (LPr) and the number of people in the county s. Hence, we have αLPrns

tourists from s potentially coming to visit r (where α is a proportionality factor). Now, we want to know
the number of additional meetings that will occur once the trails are open. In order to have a meeting,
individuals need to be in the same space within a five-minute interval. For the moment, assume that every
visitor from s to r stays in r for the same amount of time and that space aspect does not matter. That is,
suppose that the probability that a tourist meets a local during their stay is δ. So a tourist meets on avarege
δnr locals during their stay. Consequently, the additional number of colocation events is αδLPrnsnr. Hence,
the probability of colocation after the opening is:

Pr(Colocationrs|After) =
mrs0 + αδLPrnsnr

2016nrns
=

mrs0

2016nrns
+ αδLPr

where mrs0 is the default number of meetings before the opening captured by the fixed effects. Taking
logs we have that

log(Pr(Colocationrs|After)) = log(mrs0 + αδLPrnsns)− log(2016nrns)

Taking the difference between after and before the policy implementation we obtain:
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Table 3: Geolocation usage predictors

Dependent Variable: Share in colocation data
Model: (1)

Variables
(Intercept) 0.0292∗∗∗

(0.0099)
Population 3.21× 10−10

(8.03× 10−10)
Population per 1km2 −2.63× 10−7

(2.03× 10−7)
Share male -0.0513∗∗∗

(0.0184)
Share age≤14 0.0242∗∗∗

(0.0093)
Share age≥65 -0.0077

(0.0078)
Share living in urban areas 0.0037∗∗∗

(0.0006)
Share of university students in the population 0.0069

(0.0043)
Share unemployed -0.0150∗∗∗

(0.0038)
Average monthly salary −8.89× 10−8

(1.49× 10−7)
Roads per capita -0.0384

(0.0248)
Doctors per capita -0.4296∗∗∗

(0.1054)
Hotel beds per capita 0.0028∗∗

(0.0012)
Libraries per capita 1.369

(0.8603)
Cinema seats per capita -0.0337∗

(0.0185)

Fit statistics
Dependent variable mean 0.00628
R2 0.38799
Observations 377

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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log(Pr(Colocationrs|After))− log(Pr(Colocationrs|Before)) =

log(mrs0 + αδLPrnsnr)− log(2016nrns)−
(log(mrs0)− log(2016nrns)) =

log(
mrs0 + αδLPrnsnr

mrs0
) ≈ αδnsnr

mrs

(8)

Now let us add the hotel beds to the analysis. Assume that the hotel beds attract some additional tourists
from county s and that tourists stay longer in ski resorts. In particular, suppose that the number of new
visitors is proportional to the number of beds available for them. Hence we have τHrns new visitors from s
to r (in addition to those who would come just for open trails) where Hr is the number of hotel beds in r and
τ is a proportionality constant. Additionally, visitors coming for skiing can now stay longer. Assume again
that a share of them proportional to the number of beds stay longer. Hence more meetings can take place.
Suppose that the share ζHr of tourists who stay longer produce κ more meetings than a tourist who does
not stay in a hotel. Let us some up all the new terms. First, we have tourists who come skiing but don’t stay
for the night: (1− ζHr)αLPrns. Second, we have tourists who come because hotels opened: τHrns. Third,
we have tourists who come skiing and stay for the night: (ζHr)αLPrns. In total, we obtain the following
expression for the colocation probability after the opening of hotels and trails:

Pr(Colocationrs|After) =
mrs0 + (δαLPrnsnr)ζHr + δτHrnsnr + (κδαLPrnsnr)(1− ζHr)

2016nrns

= (δαLPr)ζHr + δτHr + (κδαLPr)(1− ζHr)

(9)

Taking again the difference of logs before and after the policy we obtain:

log(Pr(Colocationrs|After))− log(Pr(Colocationrs|Before)) ≈
(δαLPrnsnr)ζHr + δτHrnsnr + (κδαLPrnsnr)(1− ζHr)

mrs

(10)

Event studies in the number of Covid-19 Cases Figures 17a and 17b show the coefficients from
the health outcomes event study in the full and matched sample, respectively. We estimated the following
regression to obtain the coefficients:

ykw =
∑

W ∈ {{01/17 : 01/31},
{02/14 : 05/02}}

Ski resortkI(w = W )βW +Xkwδ + ζk + πw + ϵklw
(11)

Where ykw represents the number of cases per 10 000 in a commune k and a week ending at date w. The
dummy Ski resortsk takes value 1 if the commune k contains a ski resort, and the indicator I(w = W ) is
one if the week at hand is equal to W . The interaction between these two terms measures the differential
trend in the cases per 10 000 in communes with versus. without ski resorts. Xkw contains controls for the
share of fully vaccinated two weeks ago and the number of negative tests per 10 000. We allow for time πw

and commune ζk fixed effects, and we cluster the errors at the commune level. Figures 17a and 17b plot βW

coefficients from either estimation on the full sample or matched sample. The results are consistent with
the unconfoundedness approach and suggest that the opening of hotels sped up the arrival of second-wave
to communes with ski resorts.

36



Figure 17: Event study: Covid-19 cases and hotels opening

(a) Covid cases: full sample

Note: The regression coefficients were calculated on the
full sample. The date corresponds to the last day of the
week. Source: Own elaboration based on the Ministry of
Health Data

(b) Covid cases: matched sample

Note: The regression coefficients were calculated on the
matched sample. Each treated unit was matched with
one untreated units (first quantile of connection). Units
were matched by the distance in the propensity scores
computed on characteristics in the last period before the
policy. The date corresponds to the last day of the week.
Source: Own elaboration based on the Ministry of Health
Data
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Figure 18: Spatial distribution of communes with ski resorts

Note: The communes colored in white contain ski resorts. Source: Own elaboration based on data collected from internet
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Figure 19: Spatial distribution of the touristic appeal

Note: Colors correspond to the touristic appeal. Source: Own elaboration based on data from Polish
Statistical Office and own data

Figure 20: Commuting in counties with ski resorets

Note: The shares are calculated from data on commuting be-
tween communes in 2014 (the most recent available data). A
share of working age commuters corresponds to the share of
working age population in a commune j commuting to work
in a commune i. The averages are taken across types of pairs.
No resorts communes are communes without ski resorts and re-
sort communes are communes with ski resorts. The sample is
restricted to counties containing ski resorts. Source: Own elab-
oration based on data from Polish Statistical Office
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Figure 21: Event Study: Covid-19 and tourism opening restricted sample

Note: This figure replicates figure 11, but excluding 4 regions which changed restrictions
during the study period. As the sample size decreased, some covariates could no longer
be used for conditioning due to convergence issues in estimating propensty scores. In
partiular, the following covariates were excluded: population size, population density,
and whether the commune is a county. The estimates come from the unconfoundedness
approach by Callaway and Li [2021]. Red points correspond to the estimates for pre-
treatment periods. The reference point in a pre-treatment period t is the previous period
t − 1. Blue points correspond to the estimates for post-treatment periods. The post-
treatment periods’ propensity scores and outcome regression are based on the last period
before the policy w ∗−1. The shaded area represents simultaneous 95% confidence bands
with clustering at the commune level. The date corresponds to the last day of the week.

40



Figure 22: Event Study: Covid-19 and tourism opening; extended pre-period

Note: This figure replicates figure 11, but it extends the preperiod until November 2020.
Vaccinations and deaths variables can no longer be used for conditioning as the data starts
in 2021. The estimates come from the unconfoundedness approach by Callaway and Li
[2021]. Red points correspond to the estimates for pre-treatment periods. The reference
point in a pre-treatment period t is the previous period t− 1. Blue points correspond to
the estimates for post-treatment periods. The post-treatment periods’ propensity scores
and outcome regression are based on the last period before the policy w∗−1. The shaded
area represents simultaneous 95% confidence bands with clustering at the commune level.
The date corresponds to the last day of the week.
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Figure 23: Event Study: Covid-19 and tourism opening; placebo timing

Note: This figure replicates figure 11, but it sets a placebo treatment date on the 14th
of January. Vaccinations and deaths variables can no longer be used for conditioning
as the data starts in 2021. The estimates come from the unconfoundedness approach
by Callaway and Li [2021]. Red points correspond to the estimates for pre-treatment
periods. The reference point in a pre-treatment period t is the previous period t − 1.
Blue points correspond to the estimates for post-treatment periods. The post-treatment
periods’ propensity scores and outcome regression are based on the last period before
the policy w ∗ −1. The shaded area represents simultaneous 95% confidence bands with
clustering at the commune level. The date corresponds to the last day of the week. The
dotted line represents the actual start of the actual.
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